(1) A necessary and sufficient condition for a turning point is that the first non-zero derivative of the function must be of even order (≥ 2).

See the Appendix for a sketch of a proof of this.
The sign of this derivative then determines whether it is a maximum (if negative) or minimum (if positive). Thus, in the case of $y=x^{4}$ at $x=0, \frac{d y}{d x}=0, \frac{d^{2} y}{d x^{2}}=0, \frac{d^{3} y}{d x^{3}}=0 \& \frac{d^{4} y}{d x^{4}}=24$

Thus a necessary (but not sufficient) condition for a turning point is that $\frac{d y}{d x}=0$.
(2) $\frac{d^{2} y}{d x^{2}} \neq 0$ is a sufficient (but not necessary) condition for a turning point (eg for $y=x^{2}, \frac{d^{2} y}{d x^{2}}=2$)

If $\frac{d^{2} y}{d x^{2}}=0$ (eg for $y=x^{4}$), then the pattern of $\frac{d y}{d x}$ about the point ($x=0$ in this case) can be examined, as an alternative to investigating higher derivatives.
(3) Note that the maximum or minimum that occurs at a turning point is only a local maximum or minimum, and the greatest or least value of a function can occur without $\frac{d y}{d x}=0$ being necessary, if the domain of the function is limited, and the greatest or least value occurs at one end of the domain.
(4) The turning point of a quadratic is midway between its roots.
(5) A polynomial function of the form $(x-a)^{2 m} g(x)$, where $m>0$, has a turning point at $(a, 0)$.
(6) To find the turning points of $y=\frac{x^{2}-2 x+2}{x^{2}-3 x-4}$, consider the quadratic $\frac{x^{2}-2 x+2}{x^{2}-3 x-4}=k$, with $b^{2}-4 a c=0$ (to give a quadratic in $k)$.

Points of Inflexion

(1) A point of inflexion occurs at a turning point of the gradient.

A turning point of a function occurs when the gradient of the function changes sign (either from positive to negative, in the case of a maximum, or from negative to positive, in the case of a minimum). So a point of inflexion occurs when the gradient of the gradient changes sign; ie when $\frac{d^{2} y}{d x^{2}}$ changes sign. This is when a function changes from being convex to concave (or vice-versa). (See separate note "Convex \& concave functions".)
(2) Example 1: $y=(x-1)^{3}$

From left to right: $\frac{d y}{d x}$ is positive, falls to zero; then increases again; ie the gradient reaches a minimum (of zero).

Example 2: $y=(1-x)^{3}$

From left to right: $\frac{d y}{d x}$ is negative, rises to zero; then decreases again; ie the gradient reaches a maximum (of zero).

Example 3: $y=\frac{1}{3} x^{3}-x^{2}+2 x$

From left to right: $\frac{d y}{d x}$ is positive, falls to 1 (at $x=1$); then increases again; ie the gradient reaches a (non-zero) minimum.

Thus there is a point of inflexion at $x=1$, which isn't a stationary point.
[This function was created as follows:
If $\frac{d y}{d x}=(x-1)^{2}+1$, then $\frac{d y}{d x}$ will have a minimum of 1 at $x=1$;
y is then obtained by expanding and integrating $\left.\frac{d y}{d x}\right]$
(3) Because a point of inflexion is a turning point of the gradient:
(i) A necessary (but not sufficient) condition for a point of inflexion (turning point of the gradient) is that $\frac{d^{2} y}{d x^{2}}=0$ (e.g. $\frac{d^{2} y}{d x^{2}}=0$ at $x=0$ for $y=x^{4}$, but there is no point of inflexion)
(ii) Sufficient (but not necessary) conditions are $\frac{d^{2} y}{d x^{2}}=0 \& \frac{d^{3} y}{d x^{3}} \neq$ $0\left(\mathrm{eg} y=x^{5}\right.$, which has a point of inflexion at at $x=0$, but $\frac{d^{3} y}{d x^{3}}=$ $0)$

Note that a point of inflexion need not be a stationary point (ie where $\frac{d y}{d x}=0$); eg $y=\sin x$ at $x=0$
(4) Because a point of inflexion is a turning point of the gradient:

A necessary and sufficient condition for a point of inflexion is that the first non-zero derivative of the function is of odd order (≥ 3).

Thus, in the case of $y=x^{5}+x$ at $x=0$,
$\frac{d y}{d x}=1, \frac{d^{2} y}{d x^{2}}=0, \frac{d^{3} y}{d x^{3}}=0, \frac{d^{4} y}{d x^{4}}=0, \frac{d^{5} y}{d x^{5}}=120$
(5) A polynomial function of the form $(x-b)^{2 n+1} h(x)$, where $n>0$, has a point of inflexion at $(b, 0)$.

Appendix: A necessary and sufficient condition for a turning point is that the first non-zero derivative of the function must be of even order (≥ 2).

Sketch of proof

(A) The Mean Value theorem

This states that "If $f(x)$ has a derivative for all values of x in the interval (a, b), then there is a value ξ of x between a and b, such that $f^{\prime}(\xi)=\frac{f(b)-f(a)}{b-a} "$

The diagram demonstrates this: the gradient of the curve at $x=\xi$, ie $f^{\prime}(\xi)$ equals the gradient of the line (ie $\frac{f(b)-f(a)}{b-a}$).

The theorem can be written in the form
$f(x+h)=f(x)+h f^{\prime}(x+\theta h)$, where $0<\theta<1$
(with x replacing a and $h=b-a$)

(B) The General Mean Value theorem

It can be shown that (1) extends to
$f(x+h)=f(x)+h f^{\prime}(x)+\frac{h^{2}}{2!} f^{\prime \prime}(x)+\cdots \frac{h^{n}}{n!} f^{(n)}(x+\theta h)$,
where $0<\theta<1$
[See, for example, "A course of Pure Mathematics" by G H Hardy (CUP 1933)]
(C) If the first $n-1$ derivatives of $f(x)$ are zero, then
(2) $\Rightarrow f(x+h)-f(x)=\frac{h^{n}}{n!} f^{(n)}(x+\theta h)$

If n is even, then $f(x+h)-f(x)>0$ if $f^{(n)}(x+\theta h)>0$
This is true for positive and negative h, so that there is a local minimum at x.

Also (again with even n), $f(x+h)-f(x)<0$ if $f^{(n)}(x+\theta h)<0$, and then there is a local maximum at x.

If instead n is odd, then the sign of $\frac{h^{n}}{n!} f^{(n)}(x+\theta h)$ will change as h changes from negative to positive, so that there will not be a turning point.

Thus a necessary and sufficient condition for a turning point is that the first non-zero derivative of the function must be of even order (≥ 2).

