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Turning Points & Points of Inflexion (7 pages; 5/6/23)    

 

(1) A necessary and sufficient condition for a turning point is that 

the first non-zero derivative of the function must be of even order 

( ≥ 2).  

See the Appendix for a sketch of a proof of this. 

The sign of this derivative then determines whether it is a 

maximum (if negative) or minimum (if positive). Thus, in the case 

of 𝑦 = 𝑥4 at 𝑥 = 0,  
𝑑𝑦

𝑑𝑥
= 0 ,

𝑑2𝑦

𝑑𝑥2 = 0 ,  
𝑑3𝑦

𝑑𝑥3 = 0 & 
𝑑4𝑦

𝑑𝑥4 = 24 

 

Thus a necessary (but not sufficient) condition for a turning point 

is that  
𝑑𝑦

𝑑𝑥
= 0. 

 

(2) 
𝑑2𝑦

𝑑𝑥2 ≠ 0 is a sufficient (but not necessary) condition for a 

turning point (eg for 𝑦 = 𝑥2,
𝑑2𝑦

𝑑𝑥2 = 2) 

If  
𝑑2𝑦

𝑑𝑥2 = 0 (eg for 𝑦 = 𝑥4), then the pattern of  
𝑑𝑦

𝑑𝑥
 about the point 

(𝑥 = 0 in this case) can be examined, as an alternative to 

investigating higher derivatives. 

 

(3) Note that the maximum or minimum that occurs at a turning 

point is only a local maximum or minimum, and the greatest or 

least value of a function can occur without 
𝑑𝑦

𝑑𝑥
= 0 being 

necessary, if the domain of the function is limited, and the 

greatest or least value occurs at one end of the domain. 

 



 fmng.uk 

2 
 

 

(4) The turning point of a quadratic is midway between its roots. 

 

(5) A polynomial function of the form  (𝑥 − 𝑎)2𝑚𝑔(𝑥) , where 

𝑚 > 0 , has a turning point at (𝑎, 0).  

 

(6) To find the turning points of  𝑦 =
𝑥2−2𝑥+2

𝑥2−3𝑥−4
 , consider the 

quadratic  
𝑥2−2𝑥+2

𝑥2−3𝑥−4
= 𝑘 ,  with 𝑏2 − 4𝑎𝑐 = 0  (to give a quadratic in 

𝑘). 

 

Points of Inflexion 

(1) A point of inflexion occurs at a turning point of the gradient. 

A turning point of a function occurs when the gradient of the 

function changes sign (either from positive to negative, in the case 

of a maximum, or from negative to positive, in the case of a 

minimum). So a point of inflexion occurs when the gradient of the 

gradient changes sign; ie when 
𝑑2𝑦

𝑑𝑥2 changes sign. This is when a 

function changes from being convex to concave (or vice-versa). 

(See separate note "Convex & concave functions".) 
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(2) Example 1:  𝑦 = (𝑥 − 1)3 

 

 

From left to right: 
𝑑𝑦

𝑑𝑥
  is positive, falls to zero; then increases 

again; ie the gradient reaches a minimum (of zero). 

 

Example 2: 𝑦 = (1 − 𝑥)3  
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From left to right: 
𝑑𝑦

𝑑𝑥
  is negative, rises to zero; then decreases 

again; ie the gradient reaches  a maximum (of zero). 

 

Example 3: 𝑦 =
1

3
𝑥3 − 𝑥2 + 2𝑥 

 

 

From left to right: 
𝑑𝑦

𝑑𝑥
  is positive, falls to 1 (at 𝑥 = 1); then 

increases again; ie the gradient reaches a (non-zero) minimum. 

Thus there is a point of inflexion at 𝑥 = 1, which isn't a stationary 

point. 

[This function was created as follows:  

If  
𝑑𝑦

𝑑𝑥
= (𝑥 − 1)2 + 1, then 

𝑑𝑦

𝑑𝑥
  will have a minimum of 1 at  𝑥 = 1; 

𝑦 is then obtained by expanding and integrating 
𝑑𝑦

𝑑𝑥
  ] 
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(3) Because a point of inflexion is a turning point of the gradient: 

 

(i)  A necessary (but not sufficient) condition for a point of 

inflexion (turning point of the gradient) is that  
𝑑2𝑦

𝑑𝑥2 = 0 

(e.g. 
𝑑2𝑦

𝑑𝑥2 = 0 at 𝑥 = 0 for 𝑦 = 𝑥4, but there is no point of inflexion) 

 

(ii) Sufficient (but not necessary) conditions are  
𝑑2𝑦

𝑑𝑥2 = 0 & 
𝑑3𝑦

𝑑𝑥3 ≠

0 (eg 𝑦 = 𝑥5, which has a point of inflexion at at 𝑥 = 0, but 
𝑑3𝑦

𝑑𝑥3 =

0) 

 

Note that a point of inflexion need not be a stationary point (ie 

where 
𝑑𝑦

𝑑𝑥
= 0); eg 𝑦 = 𝑠𝑖𝑛𝑥 at 𝑥 = 0 

 

(4) Because a point of inflexion is a turning point of the gradient: 

A necessary and sufficient condition for a point of inflexion is that 

the first non-zero derivative of the function is of odd order (≥ 3).  

Thus, in the case of 𝑦 = 𝑥5 + 𝑥 at 𝑥 = 0, 

𝑑𝑦

𝑑𝑥
= 1 ,

𝑑2𝑦

𝑑𝑥2 = 0 ,  
𝑑3𝑦

𝑑𝑥3 = 0 , 
𝑑4𝑦

𝑑𝑥4 = 0, 
𝑑5𝑦

𝑑𝑥5 = 120 

 

(5) A polynomial function of the form  (𝑥 − 𝑏)2𝑛+1ℎ(𝑥), where 

𝑛 > 0,  has a point of inflexion at  (𝑏, 0). 
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Appendix: A necessary and sufficient condition for a turning point 

is that the first non-zero derivative of the function must be of 

even order (≥ 2).  

Sketch of proof 

(A) The Mean Value theorem 

This states that "If 𝑓(𝑥) has a derivative for all values of 𝑥 in the 

interval (𝑎, 𝑏), then there is a value 𝜉 of 𝑥 between 𝑎 and 𝑏, such 

that 𝑓′(𝜉) =
𝑓(𝑏)−𝑓(𝑎)

𝑏−𝑎
 " 

 

 

 

 

 

 

 

The diagram demonstrates this: the gradient of the curve at 

𝑥 = 𝜉, ie 𝑓′(𝜉) equals the gradient of the line (ie 
𝑓(𝑏)−𝑓(𝑎)

𝑏−𝑎
). 

 

The theorem can be written in the form 

𝑓(𝑥 + ℎ) = 𝑓(𝑥) + ℎ𝑓′(𝑥 + 𝜃ℎ), where 0 < 𝜃 < 1   (1) 

(with 𝑥 replacing 𝑎 and ℎ = 𝑏 − 𝑎) 
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(B)  The General Mean Value theorem 

It can be shown that (1) extends to 

𝑓(𝑥 + ℎ) = 𝑓(𝑥) + ℎ𝑓′(𝑥) +
ℎ2

2!
𝑓′′(𝑥) + ⋯

ℎ𝑛

𝑛!
𝑓(𝑛)(𝑥 + 𝜃ℎ),   (2) 

where 0 < 𝜃 < 1      

[See, for example, "A course of Pure Mathematics" by G H Hardy 

(CUP 1933)] 

 

(C) If the first 𝑛 − 1 derivatives of 𝑓(𝑥) are zero, then  

(2) ⇒ 𝑓(𝑥 + ℎ) − 𝑓(𝑥) =
ℎ𝑛

𝑛!
𝑓(𝑛)(𝑥 + 𝜃ℎ)  

If 𝑛 is even, then  𝑓(𝑥 + ℎ) − 𝑓(𝑥) > 0 if 𝑓(𝑛)(𝑥 + 𝜃ℎ) > 0 

This is true for positive and negative ℎ, so that there is a local 

minimum at 𝑥. 

Also (again with even 𝑛), 𝑓(𝑥 + ℎ) − 𝑓(𝑥) < 0 if 𝑓(𝑛)(𝑥 + 𝜃ℎ) < 0, 

and then there is a local maximum at 𝑥. 

If instead 𝑛 is odd, then the sign of  
ℎ𝑛

𝑛!
𝑓(𝑛)(𝑥 + 𝜃ℎ) will change as 

ℎ changes from negative to positive, so that there will not be a 

turning point. 

 

Thus a necessary and sufficient condition for a turning point is 

that the first non-zero derivative of the function must be of even 

order (≥ 2).  

 

 


