TMUA Exercises – Trigonometry - Sol'ns

(16 pages; 4/11/22)

(1) How many solutions does the equation $sin(2cos(2x)+2)=0 \text{ have, for } 0 \leq x \leq 2\pi?$

With
$$u = 2cos(2x) + 2$$
, $0 \le x \le 2\pi \Rightarrow 2(-1) + 2 \le u \le 2(1) + 2$ ie $0 \le u \le 4$

Then $sinu = 0 \Rightarrow u = 0 \text{ or } \pi$

$$\Rightarrow \cos(2x) = -1 \text{ or } \frac{\pi-2}{2} = \frac{\pi}{2} - 1$$

Now making the substitution w = 2x, $0 \le w \le 4\pi$

Referring to the graph of cosw,

cosw = -1 has 2 solutions (for w), and $cosw = \frac{\pi}{2} - 1$ has 4 solutions; making 6 solutions in total.

As $x = \frac{w}{2}$, there are also 6 solutions for x.

[A variation on the above approach is to say that

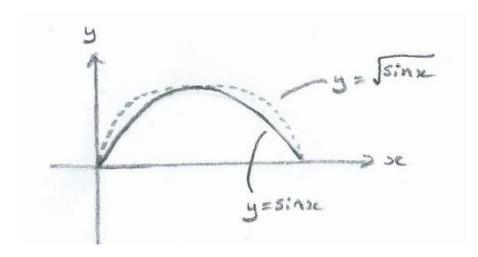
2cos(2x) + 2 must equal $n\pi$, for suitable integer n

Then, either n = 0, with cos(2x) = -1,

or
$$n = 1$$
, with $cos(2x) = \frac{\pi}{2} - 1$

(no other values of n are consistent with 2cos(2x) + 2), as before.]

(2) Sketch (i) $y = \sqrt{\sin x}$ and (ii) $y = (\sin x)^{\frac{1}{n}}$ for large positive integer n (for $0 \le x \le \pi$ in both cases).



(i) Note that, for 0 < y < 1, $\sqrt{y} > y$

So, for $y = \sqrt{sinx}$, the graph will hug the y - axis more than for y = sinx.

Also, if
$$f(x) = \sqrt{\sin x}$$
, $f'(x) = \frac{1}{2}(\sin x)^{-\frac{1}{2}}\cos x$,

so that $f'(0) = \infty$ (strictly speaking, it is 'undefined');

ie the graph is vertical at x = 0 (and also $x = \pi$, by symmetry).

(ii) The effect is greater for larger n, and the graph tends to a rectangular shape.

fmng.uk

(3) What is the period of $2 \sin \left(3x + \frac{\pi}{4}\right) + 3\cos \left(\frac{2x}{3} - \frac{\pi}{3}\right)$?

The period
$$T_1$$
 of $2 \sin \left(3x + \frac{\pi}{4}\right)$ satisfies $3T_1 = 2\pi$

[as
$$2sin\left(3[0] + \frac{\pi}{4}\right) = 2sin\left(2\pi + \frac{\pi}{4}\right)$$
]; ie $T_1 = \frac{2\pi}{3}$

Similarly for
$$3\cos(\frac{2x}{3} - \frac{\pi}{3})$$
, $\frac{2T_2}{3} = 2\pi$, so that $T_2 = 3\pi$

The period of the sum of these functions is the LCM of these two periods; ie 6π .

(4) Assuming that $sin^2\theta + cos^2\theta = 1$, but without using any compound angle results, show that $sin\theta cos\theta \leq \frac{1}{2}$

$$(\sin\theta - \cos\theta)^2 \ge 0 \Rightarrow \sin^2\theta + \cos^2\theta - 2\sin\theta\cos\theta \ge 0$$

 $\Rightarrow 1 \ge 2\sin\theta\cos\theta \Rightarrow \sin\theta\cos\theta \le \frac{1}{2}$

(5) Solve
$$\sin (2\theta - \frac{\pi}{6}) = 0.5 \ (0 < \theta < 2\pi)$$

Let
$$= 2\theta - \frac{\pi}{6}$$
, so that $-\frac{\pi}{6} < u < 4\pi - \frac{\pi}{6}$

Then
$$\sin u = 0.5 \ \Rightarrow u = \frac{\pi}{6}$$
, $\frac{\pi}{6} + 2\pi$ and $\pi - \frac{\pi}{6}$, $\pi - \frac{\pi}{6} + 2\pi$

ie
$$u = \frac{\pi}{6}$$
, $\frac{13\pi}{6}$, $\frac{5\pi}{6}$ & $\frac{17\pi}{6}$ or $\frac{\pi}{6}$, $\frac{5\pi}{6}$, $\frac{13\pi}{6}$ & $\frac{17\pi}{6}$

so that
$$\theta = \frac{1}{2} \left(u + \frac{\pi}{6} \right) = \frac{2\pi}{12}$$
, $\frac{6\pi}{12}$, $\frac{14\pi}{12}$ & $\frac{18\pi}{12}$

ie
$$\theta = \frac{\pi}{6}$$
, $\frac{\pi}{2}$, $\frac{7\pi}{6}$ & $\frac{3\pi}{2}$

(6) Solve $sin\theta = cos 4\theta$ for $0 < \theta < \pi$

$$\sin\theta = \sin(\frac{\pi}{2} - 4\theta)$$

Hence
$$\theta = \frac{\pi}{2} - 4\theta + 2n\pi$$
 (1) or $\theta = \left(\pi - \left[\frac{\pi}{2} - 4\theta\right]\right) + 2n\pi$ (2)

From (1),
$$5\theta = \frac{\pi(1+4n)}{2}$$
, so that $\theta = \frac{\pi(1+4n)}{10}$

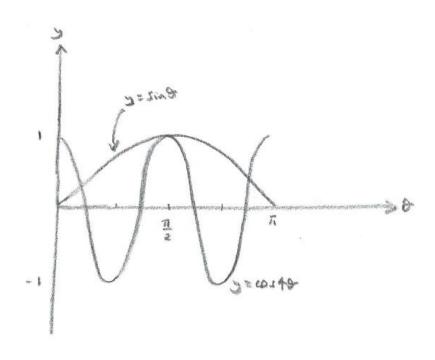
giving
$$\theta = \frac{\pi}{10}$$
 , $\frac{\pi}{2}$ or $\frac{9\pi}{10}$

From (2),
$$-3\theta = \frac{\pi(1+4n)}{2}$$
, so that $\theta = \frac{-\pi(1+4n)}{6}$

giving
$$\theta = \frac{\pi}{2}$$
 again

Thus, the solutions are
$$\theta = \frac{\pi}{10}$$
 , $\frac{\pi}{2}$ or $\frac{9\pi}{10}$

A sketch confirms that these are plausible.



(7) How many solutions does the equation sin(2cos(2x) + 2) = 0 have, for $0 \le x \le 2\pi$?

With
$$u = 2cos(2x) + 2$$
, $0 \le x \le 2\pi \Rightarrow 2(-1) + 2 \le u \le 2(1) + 2$ ie $0 \le u \le 4$

Then $sinu = 0 \Rightarrow u = 0 \text{ or } \pi$

$$\Rightarrow \cos(2x) = -1 \text{ or } \frac{\pi-2}{2} = \frac{\pi}{2} - 1$$

Now making the substitution w = 2x, $0 \le w \le 4\pi$

Referring to the graph of cosw,

cosw = -1 has 2 solutions (for w), and $cosw = \frac{\pi}{2} - 1$ has 4 solutions; making 6 solutions in total.

As = $\frac{w}{2}$, there are also 6 solutions for x.

[A variation on the above approach is to say that

2cos(2x) + 2 must equal $n\pi$, for suitable integer n

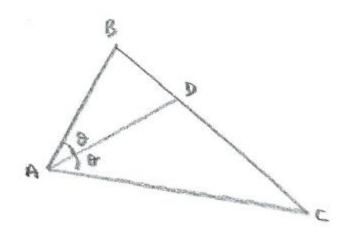
Then, either n = 0, with cos(2x) = -1,

or
$$n = 1$$
, with $cos(2x) = \frac{\pi}{2} - 1$

(no other values of n are consistent with 2cos(2x) + 2), as before.]

(8) Angle Bisector Theorem

Referring to the diagram below, the Angle Bisector theorem says that $\frac{BD}{DC} = \frac{AB}{AC}$. Prove the Angle Bisector Theorem.



By the Sine rule for triangle ABD,
$$\frac{BD}{\sin\theta} = \frac{AB}{\sin ADB}$$
 (1)

and, for triangle ADC,
$$\frac{DC}{\sin\theta} = \frac{AC}{\sin ADC} = \frac{AC}{\sin ADB}$$
 (2)

Then (1)
$$\Rightarrow \frac{\sin\theta}{\sin ADB} = \frac{BD}{AB}$$
 and (2) $\Rightarrow \frac{\sin\theta}{\sin ADB} = \frac{DC}{AC}$

so that
$$\frac{BD}{AB} = \frac{DC}{AC}$$

and hence
$$\frac{BD}{DC} = \frac{AB}{AC}$$