TMUA Exercises - Transformations - Sol'ns

(9 pages; 4/11/22)
(1) Reflection in the line $x=L$: What composite transformation is equivalent to this?

Solution

translation of $\binom{-L}{0}$, followed by reflection in y-axis, followed by translation of $\binom{L}{0}$
$y=f(x) \rightarrow$?
translation of $\binom{-L}{0}: y=f(x) \rightarrow y=f(x+L)$;
reflection in y-axis: $y=f(x+L) \rightarrow y=f(-x+L)$
translation of $\binom{L}{0}: y=f(-x+L) \rightarrow y=f(-[x-L]+L)$
$=f(2 L-x)$
(2) What combination of transformations converts $y=2^{x}$ to $y=2^{4 x-2} ?$

Solution

$y=2^{x} \rightarrow y=2^{4 x}$ is a stretch of scale factor $\frac{1}{4}$ in the x-direction Then $y=2^{4 x} \rightarrow y=2^{4\left(x-\frac{1}{2}\right)}=2^{4 x-2}$ is a translation of $\binom{\frac{1}{2}}{0}$
[Alternatively, $y=2^{4 x} \rightarrow y=\left(\frac{1}{4}\right) 2^{4 x}=2^{4 x-2}$ is a stretch of scale factor $\frac{1}{4}$ in the y-direction.]
(3) (i) Find a series of transformations that can be applied to $y=$ $\frac{1}{x}$ to produce $y=\frac{3 x-2}{6 x-1}$.
(ii) Hence or otherwise, sketch the curve $y=\frac{3 x-2}{6 x-1}$.

Solution

(i) $\frac{3 x-2}{6 x-1}=\frac{3 x-\frac{1}{2}-\frac{3}{2}}{6 x-1}=\frac{1}{2}-\frac{3}{12}\left(\frac{1}{x-\frac{1}{6}}\right)$

So a possible series of transformations is:
a translation of $\binom{\frac{1}{6}}{0}$,
followed by a stretch of scale factor $\frac{1}{4}$ in the y-direction,
followed by a reflection in the x-axis,
followed by a translation of $\binom{0}{\frac{1}{2}}$
[Note: $\frac{1}{2}-\frac{3}{12}\left(\frac{1}{x-\frac{1}{6}}\right)=\frac{1}{2}-\frac{1}{4 x-\frac{2}{3}}$, so an alternative series of transformations is:
a translation of $\binom{\frac{2}{3}}{0}\left[\frac{1}{x} \rightarrow \frac{1}{x-\frac{2}{3}}\right]$ followed by
a stretch of scale factor $\frac{1}{4}$ in the x-direction $\left[\frac{1}{x-\frac{2}{3}} \rightarrow \frac{1}{4 x-\frac{2}{3}}\right]$, followed by a reflection in the x-axis, followed by a translation of $\binom{0}{\frac{1}{2}}$.
Alternatively, $\frac{1}{4 x-\frac{2}{3}}$ could be obtained instead by a stretch of scale factor $\frac{1}{4}$ in the x-direction $\left[\frac{1}{x} \rightarrow \frac{1}{4 x}\right]$ (or a stretch of scale factor $\frac{1}{4}$ in the y-direction
$\left.\left[\frac{1}{x} \rightarrow \frac{1}{4}\left(\frac{1}{x}\right)\right]\right)$, followed by a translation of $\left.\binom{\frac{1}{6}}{0}\left[\frac{1}{4 x} \rightarrow \frac{1}{4\left(x-\frac{1}{6}\right)}\right].\right]$
(ii) As an alternative to performing the transformations in (i):

Step 1: $x=0 \Rightarrow y=2 ; y=0 \Rightarrow x=\frac{2}{3}$
Step 2: vertical asymptote when $6 x-1=0 \Rightarrow x=\frac{1}{6}$
$x=\frac{1}{6}+\delta(\delta>0$ is small $) \Rightarrow y=\frac{3 x-2}{6 x-1}=\frac{-}{+} ;$ ie $y<0$
$\left[x=\frac{1}{6}-\delta \Rightarrow y=\frac{-}{-}\right.$; ie $\left.y>0\right]$
Step 3: $\lim _{x \rightarrow \infty} \frac{3 x-2}{6 x-1}=\lim _{x \rightarrow \infty} \frac{3-\frac{2}{x}}{6-\frac{1}{x}}=\frac{3}{6}=\frac{1}{2}$ (and also as $x \rightarrow-\infty$)
Step 4: When $x=100, y=\frac{298}{599}<\frac{1}{2}$, so that $y \rightarrow \frac{1}{2}^{-}$as $x \rightarrow \infty$ and when $x=-100, y=\frac{-302}{-601}>\frac{1}{2}$, so that $y \rightarrow \frac{1}{2}^{+}$as $x \rightarrow-\infty$

(4) What combination of transformations converts $y=3^{-x}$ to $y=3^{2 x-1} ?$

Solution

$y=3^{-x} \rightarrow y=3^{x}$ is a reflection in the y-axis.
$y=3^{x} \rightarrow y=3^{x-1}$ is a translation of $\binom{1}{0}$
$y=3^{x-1} \rightarrow y=3^{2 x-1}$ is a stretch of scale factor $\frac{1}{2}$ in the
x-direction

