fmng.uk TMUA Exercises – Logarithms - Sol'ns (7 pages; 4/11/22)

(1) (i) Show that $log_2 3 > \frac{3}{2}$

(ii) Find an upper bound for $log_2 3$ (as small as possible)

(i) Show that $log_2 3 > \frac{3}{2}$

Solution

$$log_2 3 > \frac{3}{2} \Leftrightarrow 3 > 2^{\frac{3}{2}}$$
 (as $y = 2^x$ is an increasing function)
 $\Leftrightarrow 3^2 > 2^3$

(ii) Find an upper bound for $log_2 3$ (as small as possible)

Solution

Suppose that $log_2 3 < \frac{m}{n}$ Then $3 < 2^{(\frac{m}{n})}$ and $3^n < 2^m$ As $243 = 3^5 < 2^8 = 256$, $log_2 3 < \frac{8}{5}$ [and $\frac{8}{5}$ is a reasonably low upper bound, as 243 & 256 are reasonably close]

fmng.uk

(2) Prove that $log_b c = \frac{log_a c}{log_a b}$

Solution

rtp $log_a b \ log_b c = log_a c$ (*)

Method 1

Let $b = a^x \& c = b^y$

Then $c = (a^x)^y = a^{xy}$

and $log_a c = xy = log_a b \ log_b c$, as required

Method 2

(*) is equivalent to $a^{\log_a b \log_b c} = a^{\log_a c}$ (as $y = a^x$ is an increasing function)

ie $(a^{\log_a b})^{\log_b c} = c$ (**)

and the LHS equals $b^{\log_b c} = c$, so that (**) holds, and hence (*) holds also

(3) Show that $\log(4 - \sqrt{15}) = -\log(4 + \sqrt{15})$

Solution

$$\log(4 - \sqrt{15}) = -\log\left(\frac{1}{4 - \sqrt{15}}\right) = -\log\left(\frac{4 + \sqrt{15}}{16 - 15}\right) = -\log\left(4 + \sqrt{15}\right)$$