TMUA Exercises - Inequalities - Sol'ns

(19 pages; 4/11/22)
(1) Are the following true or false?
(i) $a<b \Rightarrow \frac{1}{a}>\frac{1}{b}$
(ii) $a<b \Rightarrow a^{2}<b^{2}$
(iii) $a<b \& c<d \Rightarrow a+c<b+d$
(iv) $a<b \& c<d \Rightarrow a-c<b-d$

Solution
(i) Not true if $a<0 \& b>0$ (consider the graph of $y=1 / x$)
(ii) Not true if $a<0 \& b<0$ or
if $a<0, b>0 \&|b|<|a|$ (consider the graph of $y=x^{2}$)
(iii) True: $a<b \Rightarrow a+c<b+c<b+d$
(iv) False: For example, $8<9$ and $2<4$, but it is not true that $8-2<9-4$; see diagram

(2) Assuming that $\sin ^{2} \theta+\cos ^{2} \theta=1$, but without using any compound angle results, show that $\sin \theta \cos \theta \leq \frac{1}{2}$

Solution

$$
\begin{aligned}
& (\sin \theta-\cos \theta)^{2} \geq 0 \Rightarrow \sin ^{2} \theta+\cos ^{2} \theta-2 \sin \theta \cos \theta \geq 0 \\
& \Rightarrow 1 \geq 2 \sin \theta \cos \theta \Rightarrow \sin \theta \cos \theta \leq \frac{1}{2}
\end{aligned}
$$

(3) Which is larger: $\frac{\sqrt{7}}{2}$ or $\frac{1+\sqrt{6}}{3}$ (without using a calculator)?

Solution

Considering the difference of squares:
$\frac{7}{4}-\frac{(1+2 \sqrt{6}+6)}{9}=\frac{63-28-8 \sqrt{6}}{36}>\frac{35-8(3)}{36}>0$; so $\frac{\sqrt{7}}{2}$ is larger
[Another approach is to investigate $\frac{\left(\frac{7}{4}\right)}{\left(\frac{7+2 \sqrt{6}}{9}\right)}=\frac{63(7-2 \sqrt{6})}{4(49-24)}=$
$\frac{63(7-2 \sqrt{6})}{100}$, but it isn't as easy to show that this expression is greater than 1]
(4) Is $\frac{6}{7}<\frac{2}{\sqrt{5}} ?$

Solution

$\frac{6}{7}<\frac{2}{\sqrt{5}} \Leftrightarrow \frac{36}{49}<\frac{4}{5}$
$49 \times 0.8=\frac{1}{10}(320+72)=39.2>36$
So $\frac{36}{49}<\frac{39.2}{49}=0.8=\frac{4}{5}$
Answer is Yes.
(5) Is $\log _{2} 3>\frac{3}{2}$?

Solution
$\log _{2} 3>\frac{3}{2} \Leftrightarrow 3>2^{\frac{3}{2}}$ (as $y=2^{x}$ is an increasing function)
$\Leftrightarrow 3^{2}>2^{3}$
So answer is Yes.
(6) The probability that a (biased) coin shows Heads is p, and the probability that it shows Tails is q. Prove that $p q \leq \frac{1}{4}$.

Solution

$p q \leq \frac{1}{4} \Leftrightarrow 4 p(1-p) \leq 1($ as $p+q=1)$
$\Leftrightarrow 4 p^{2}-4 p+1 \geq 0$
As LHS $=4\left(p-\frac{1}{2}\right)^{2}$, the result is proved.
(7) Show that if $X>1 \& Y>1$, then $X+Y<X Y+1$

Solution

$$
\begin{aligned}
& X+Y<X Y+1 \Leftrightarrow X+Y-X Y-1<0 \\
& \Leftrightarrow X(1-Y)+Y-1<0 \\
& \Leftrightarrow(X-1)(1-Y)<0 \\
& \Leftrightarrow(X-1)(Y-1)>0
\end{aligned}
$$

Then $X>1 \& Y>1 \Rightarrow(X-1)(Y-1)>0 \Rightarrow X+Y<X Y+1$
(8) Show that $e^{3}>4 e^{\frac{3}{2}}$

Solution

An equivalent result to prove is $e^{\frac{3}{2}}>4$ (dividing both sides by $e^{\frac{3}{2}}$, which is positive)
$\Leftrightarrow e^{3}>16$ (as the function $y=x^{2}$ is increasing for $x>0$)
$e^{3}>(2+0.7)^{3}>2^{3}+3\left(2^{2}\right)(0.7)=8+8.4>16$,
so that the original result is also true
(9) Let $x, y \& z$ be positive real numbers.
(i) If $x+y \geq 2$, is it necessarily true that $\frac{1}{x}+\frac{1}{y} \leq 2$?
(ii) If $x+y \leq 2$, is it necessarily true that $\frac{1}{x}+\frac{1}{y} \geq 2$?

Solution

(i) No: if x (say) is very small, then $\frac{1}{x}$ will be very large.
(ii) Note that, when $x=y=1, \frac{1}{x}+\frac{1}{y}=2$

Also, if the result is true for $x+y=2$, then if x or y is made smaller, so that $x+y<2, \frac{1}{x}+\frac{1}{y}$ becomes larger, so that the result is still true. So, WLOG (without loss of generality), we need only investigate the case where $x+y=2$.

Experimenting with some numbers, we get the impression that $\frac{1}{x}+\frac{1}{y} \geq 2$. So, aiming for a proof by contradiction, suppose that $\frac{1}{x}+\frac{1}{y}<2$

Then, $\frac{x+y}{x y}<2$, so that $2<2 x(2-x)$ [as $\left.x y>0\right]$
and hence $1<2 x-x^{2}$ and $x^{2}-2 x+1<0$ or $(x-1)^{2}<0$, which is impossible.

Thus $\frac{1}{x}+\frac{1}{y} \geq 2$ when $x+y \leq 2$

Alternative approach

To prove that $\frac{1}{x}+\frac{1}{y} \geq 2$ when $x+y=2$,
we note that WLOG we need only consider solutions of the form $x=1+\delta, y=1-\delta($ where $\delta>0)$.

But the reduction from $\frac{1}{1}$ to $\frac{1}{1+\delta}$ will be outweighed by the rise from $\frac{1}{1}$ to $\frac{1}{1-\delta}$ [consider the extreme cases $\frac{1}{1000}$ to $\frac{1}{1001}$ versus $\frac{1}{4}$ to $\frac{1}{3}$, which shows that the change of 1 in the denominator has a
greater effect when the denominator is smaller, as it is with $1-\delta$, compared to $1+\delta$]

