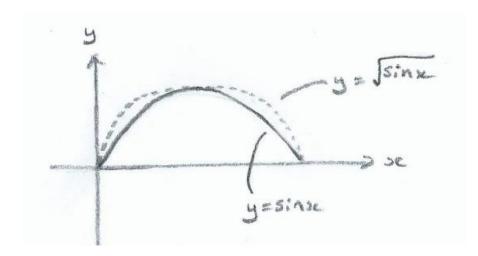

## TMUA Exercises – Curve Sketching - Sol'ns

(6 pages; 4/11/22)

(1) Sketch the graph of  $\sqrt{x^2 - 2x + 1}$  for  $0 \le x \le 2$ 


## Solution



For 
$$0 \le x \le 1$$
,  $\sqrt{x^2 - 2x + 1} = \sqrt{(x - 1)^2} = \sqrt{(1 - x)^2} = 1 - x$   
For  $1 \le x \le 2$ ,  $\sqrt{x^2 - 2x + 1} = \sqrt{(x - 1)^2} = x - 1$ 

(2) Sketch (i)  $y = \sqrt{\sin x}$  and (ii)  $y = (\sin x)^{\frac{1}{n}}$  for large positive integer n (for  $0 \le x \le \pi$  in both cases).

## Solution



(i) Note that, for 0 < y < 1,  $\sqrt{y} > y$ 

So, for  $y = \sqrt{sinx}$ , the graph will hug the y - axis more than for y = sinx.

Also, if 
$$f(x) = \sqrt{\sin x}$$
,  $f'(x) = \frac{1}{2}(\sin x)^{-\frac{1}{2}}\cos x$ ,

so that  $f'(0) = \infty$  (strictly speaking, it is 'undefined');

ie the graph is vertical at x = 0 (and also  $x = \pi$ , by symmetry).

(ii) The effect is greater for larger n, and the graph tends to a rectangular shape.

(3) Sketch the curve  $x^2 = y(1 - y)$ 

## Solution

$$y(1-y) = -(y^2 - y) = -(y - \frac{1}{2})^2 + \frac{1}{4}$$

So curve is 
$$x^2 + (y - \frac{1}{2})^2 = \frac{1}{4}$$

ie a circle centre  $(0, \frac{1}{2})$  and radius  $\frac{1}{2}$