TMUA Specimen Paper 2 Solutions (9 pages; 25/10/23)

Q1

$$2x^{2} + 2y^{2} - 8x + 12y + 15 = 0$$

$$\Leftrightarrow 2(x - 2)^{2} - 8 + 2(y + 3)^{2} - 18 + 15 = 0$$

$$\Leftrightarrow 2(x - 2)^{2} + 2(y + 3)^{2} = 11 \text{ or } (x - 2)^{2} + (y + 3)^{2} = \frac{11}{2}$$
so that the radius is $\sqrt{\frac{11}{2}}$

Answer is B

Q2

$$y = \frac{(3x-2)^2}{x\sqrt{x}} = (3x-2)^2 x^{-\frac{3}{2}}$$

$$\Rightarrow \frac{dy}{dx} = 2(3x-2)(3)x^{-\frac{3}{2}} + (3x-2)^2(-\frac{3}{2})x^{-\frac{5}{2}}$$
When $x = 2$, $\frac{dy}{dx} = 2(4)(3)\left(\frac{1}{2\sqrt{2}}\right) + 16(-\frac{3}{2})\left(\frac{1}{4\sqrt{2}}\right)$

$$= \left(\frac{1}{\sqrt{2}}\right)(12-6) = 3\sqrt{2}$$

Answer is B

Q3

Step 1 is liable to introduce a spurious sol'n (as the eq'n $-\sqrt{x+5} = x+3$ also leads to $x+5=x^2+6x+9$ [it remains to be seen though whether $-\sqrt{x+5} = x+3$ has any sol'ns]

We can see that x = -4 is not a sol'n of the original eq'n, but that x = -1 is. So statements A and B are both Incorrect. And statement C is correct (and statements D and E are Incorrect).

Answer is C

Q4

Answer is A (not that hard!)

Q5

Approach 1:

$$2^5 \approx 3^3 \Rightarrow log_3(2^5) \approx 3$$

$$\Rightarrow 5log_3 2 \approx 3$$
, so that $log_3 2 \approx \frac{3}{5}$

Approach 2: Suppose that $log_3 2$ is approximately $\frac{a}{b}$. This is equivalent to $2 \approx 3^{\frac{a}{b}}$, and hence $2^b \approx 3^a$.

So, writing
$$a = 3$$
, $b = 5$

[as
$$3^3 = 27$$
 is reasonably close to $2^5 = 32$] gives $log_3 2 \approx \frac{3}{5}$

Answer is A

Maximum height is $\frac{5649}{79.5}$ cm; ie effectively $\frac{5650}{79.5}$ cm (though arguably not correct!)

Answer is F

Q7

$$x = 0 \Rightarrow y^3 = 1 \Rightarrow y = 1 \Rightarrow B \text{ or } C$$

$$y = 0 \Rightarrow x^3 = 1 \Rightarrow x = 1 \Rightarrow C$$

Answer is C

Q8

The sum is
$$n + (n + 1) + (n + 2) + (n + 3) = 4n + 6$$

This will only be a multiple of 6 if n is a multiple of 3, so statement C is true.

Answer is C

Q9

As an example where (*)' is true (for a simplified 3 day week):

Mon: 2 MPs

Tue: no MPs

Wed: 1 MP

Only B & E are compatible with this example.

But B isn't compatible with the following example which satisfies (*)':

Mon: 1 MP

Tue: no MPs

Wed: 1 MP

So answer is E

Q10

[Be careful not to misread this as $y = log_2 x$]

$$log_x 2 = \frac{1}{log_2 x}$$

Answer: E

Q11

$$A = \tan\left(\frac{3\pi}{4} - \pi\right) = \tan\left(-\frac{\pi}{4}\right) = -\tan\left(\frac{\pi}{4}\right) = -\frac{1}{\sqrt{2}}$$

$$B = 2$$

$$C = 1$$

$$E < 0.5^{10} < 1$$

Answer: D

[Remainder theorem]

Answer: A

Q13

The information can be written as

$$F > G, H > L, L > G, R > G$$
; eg FRHLG

We can say for certain that G comes last.

The only other constraint is that H > L.

There are 4! ways of ordering F, R, H & L, without this constraint,

So number of ways is 12.

and H > L for half of these.

Answer: C

Q14

There will be 4 solutions to $\frac{dy}{dx} = 0$, and any complex roots will come in conjugate pairs, as the coefficients are real. So B cannot be possible, as this would mean that there were 3 real roots and 1 complex root.

[This is technically outside the TMUA syllabus, but the official solution, not involving complex numbers, is considerably longer.]

Answer: B

Statement $1 \equiv a \geq b$ (always true)

Statement 2 $\equiv (a-b)^2 \geq 0$ (always true)

Re. Statement 3: $a \ge b \Rightarrow ac \ge bc$ if $c \ge 0$, but not if c < 0

So Statement 3 is not always true.

Answer: E

Q16

$$a_2 = 2 - 1 = 1$$

$$a_3 = 1 + 1 = 2$$

$$a_4 = 2 - 1 = 1$$

...

$$a_{99} = 1 + 1 = 2$$

$$a_{100} = 2 - 1 = 1$$

So
$$\sum_{n=1}^{100} a_n = 50(2+1) = 150$$

Answer: A

Q17

Answer: E

Approach 1

Let the 5 numbers be m-a-b, m-a, m, m+c, m+c+d

where a, b, c & d are all ≥ 0

Then (m-a-b) + (m-a) + m + (m+c) + (m+c+d) = 0(1)

and
$$(m+c+d)-(m-a-b)=20$$
 (2)

so that c + d + a + b = 20, and

$$(m-a-b) + (m-a) + m + (m+c) + (m-a-b) + 20 = 0$$

$$\Rightarrow 5m = 3a + 2b - c - 20$$

Thus 5m = 2(c + d + a + b) + a - 3c - 2d - 20

$$= 20 + a - 3c - 2d$$

$$= 20 + (20 - c - d - b) - 3c - 2d$$

[aiming for a form where the letters all have negative signs]

$$= 40 - 4c - 3d - b$$

and this is maximised when b=c=d=0, so that a=20

(as
$$c + d + a + b = 20$$
) and $m = 8$

[Then the 5 numbers are -12, -12, 8, 8, 8]

Approach 2 (Trial & Improvement)

One sol'n (satisfying the 2 conditions) is -10, 0, 0, 0, 10,

So that M (the largest possible value for the median) ≥ 0 (as indicated by the multiple choice options).

The median can then be increased to 5 without changing the 1^{st} and last values, giving -10, -10, 5, 5, 10 (the 4^{th} value has to be at least 5, and if equals 5, then the 2^{nd} value has to be -10, to maintain the mean of 0).

The median can then be increased to 8 (as suggested by the MC options) by increasing the 4^{th} & 5^{th} values to 8, which allows the 1^{st} value to be lowered to -12, which accommodates a 2^{nd} value of -12 (needed to maintain the mean of 0).

Thus, $M \ge 8$

But M=20 isn't possible, as the 4th & 5th values would then have to be at least 20, forcing the 1st value to be at least 0 (for the range to be 20). But this would give a mean > 0.

So $8 \le M < 20$, and from the MC options available, M must be 8.

Answer: E

Q19

[A graphical approach looks promising here, but unfortunately turns out to be too complicated.]

The two equations can be rewritten as:

$$x^3 + ax^2 - bx - c = 0$$
 (1)

and
$$x^3 - ax^2 - bx + c = 0$$
 (2)

[Given that only the signs of even powers of x differ]

Let
$$y = -x$$

Then (2) becomes
$$-y^3 - ay^2 + by + c = 0$$

or $y^3 + ay^2 - by - c = 0$, which has the same roots as (1).

So, if (1) has one positive and two negative roots, (2) will have one negative and two positive roots.

Answer: B

Q20

[Begin by looking for something to narrow down the options.]

[Assuming P true doesn't lead immediately to anything tangible.]

Q true \Rightarrow S true \Rightarrow exactly one of PR'T', P'RT' & P'R'T holds

Consider PR'T': this is possible (an odd number of statements are true, Mr R's first name could be Rupert; both statements made by women are true)

So QSPR'T' is possible.

This means that (assuming exactly one of the answers is correct), the answer must be D or H.

Consider H, where exactly 2 statements could be true:

If H holds, then P cannot be true (as 2 is not an odd number).

We have seen that Q true \Rightarrow 3 statements are true, so (for H to hold), Q cannot be true.

If R is true, then P is true, but this has been shown not to be the case.

So, if exactly 2 statements are true, then they must be S and T.

But if T is true, then S is not true, so exactly 2 statements is not possible.

Thus H is not possible, and the answer must be D.