TMUA Specimen Paper 2 Solutions (9 pages; 25/10/23)

Q1

$2 x^{2}+2 y^{2}-8 x+12 y+15=0$
$\Leftrightarrow 2(x-2)^{2}-8+2(y+3)^{2}-18+15=0$
$\Leftrightarrow 2(x-2)^{2}+2(y+3)^{2}=11$ or $(x-2)^{2}+(y+3)^{2}=\frac{11}{2}$
so that the radius is $\sqrt{\frac{11}{2}}$

Answer is B

Q2

$y=\frac{(3 x-2)^{2}}{x \sqrt{x}}=(3 x-2)^{2} x^{-\frac{3}{2}}$
$\Rightarrow \frac{d y}{d x}=2(3 x-2)(3) x^{-\frac{3}{2}}+(3 x-2)^{2}\left(-\frac{3}{2}\right) x^{-\frac{5}{2}}$
When $x=2, \frac{d y}{d x}=2(4)(3)\left(\frac{1}{2 \sqrt{2}}\right)+16\left(-\frac{3}{2}\right)\left(\frac{1}{4 \sqrt{2}}\right)$
$=\left(\frac{1}{\sqrt{2}}\right)(12-6)=3 \sqrt{2}$

Answer is B

Q3

Step 1 is liable to introduce a spurious sol'n (as the eq'n
$-\sqrt{x+5}=x+3$ also leads to $x+5=x^{2}+6 x+9$ [it remains to be seen though whether $-\sqrt{x+5}=x+3$ has any sol'ns]

We can see that $x=-4$ is not a sol'n of the original eq'n, but that $x=-1$ is. So statements A and B are both Incorrect. And statement C is correct (and statements D and E are Incorrect).

Answer is C

Q4

Answer is A (not that hard!)

Q5

Approach 1:
$2^{5} \approx 3^{3} \Rightarrow \log _{3}\left(2^{5}\right) \approx 3$
$\Rightarrow 5 \log _{3} 2 \approx 3$, so that $\log _{3} 2 \approx \frac{3}{5}$
Approach 2: Suppose that $\log _{3} 2$ is approximately $\frac{a}{b}$ This is equivalent to $2 \approx 3^{\frac{a}{b}}$, and hence $2^{b} \approx 3^{a}$

So, writing $a=3, b=5$
[as $3^{3}=27$ is reasonably close to $2^{5}=32$]
gives $\log _{3} 2 \approx \frac{3}{5}$
Answer is A

Q6
Maximum height is $\frac{564 \dot{9}}{79.5} \mathrm{~cm}$; ie effectively $\frac{5650}{79.5} \mathrm{~cm}$ (though arguably not correct!)

Answer is F

Q7

$x=0 \Rightarrow y^{3}=1 \Rightarrow y=1 \Rightarrow B$ or C
$y=0 \Rightarrow x^{3}=1 \Rightarrow x=1 \Rightarrow C$

Answer is C

Q8
The sum is $n+(n+1)+(n+2)+(n+3)=4 n+6$
This will only be a multiple of 6 if n is a multiple of 3 , so statement C is true.

Answer is C

Q9

As an example where $(*)^{\prime}$ is true (for a simplified 3 day week):
Mon: 2 MPs
Tue: no MPs
Wed : 1 MP
Only B \& E are compatible with this example.

But B isn't compatible with the following example which satisfies
$(*)^{\prime}:$
Mon: 1 MP
Tue: no MPs
Wed : 1 MP

So answer is E

Q10
[Be careful not to misread this as $y=\log _{2} x$]
$\log _{x} 2=\frac{1}{\log _{2} x}$
Answer: E

Q11

$A=\tan \left(\frac{3 \pi}{4}-\pi\right)=\tan \left(-\frac{\pi}{4}\right)=-\tan \left(\frac{\pi}{4}\right)=-\frac{1}{\sqrt{2}}$
$B=2$
$C=1$
$3<D<4$
$E<0.5^{10}<1$
Answer: D

Q12

[Remainder theorem]

Answer: A

Q13

The information can be written as
$F>G, H>L, L>G, R>G ;$ eg FRHLG
We can say for certain that G comes last.
The only other constraint is that $H>L$.
There are 4! ways of ordering F, R, H \& L, without this constraint, and $H>L$ for half of these.

So number of ways is 12 .
Answer: C

Q14

There will be 4 solutions to $\frac{d y}{d x}=0$, and any complex roots will come in conjugate pairs, as the coefficients are real.
So B cannot be possible, as this would mean that there were 3 real roots and 1 complex root.
[This is technically outside the TMUA syllabus, but the official solution, not involving complex numbers, is considerably longer.]

Answer: B

Statement $1 \equiv a \geq b$ (always true)
Statement $2 \equiv(a-b)^{2} \geq 0$ (always true)
Re. Statement 3: $a \geq b \Rightarrow a c \geq b c$ if $c \geq 0$, but not if $c<0$
So Statement 3 is not always true.

Answer: E

Q16

$a_{2}=2-1=1$
$a_{3}=1+1=2$
$a_{4}=2-1=1$
...
$a_{99}=1+1=2$
$a_{100}=2-1=1$

So $\sum_{n=1}^{100} a_{n}=50(2+1)=150$
Answer: A

Q17

Answer: E

Q18

Approach 1

Let the 5 numbers be $m-a-b, m-a, m, m+c, m+c+d$ where $a, b, c \& d$ are all ≥ 0

Then $(m-a-b)+(m-a)+m+(m+c)+(m+c+d)=0$
and $(m+c+d)-(m-a-b)=20(2)$
so that $c+d+a+b=20$, and

$$
\begin{aligned}
& \quad(m-a-b)+(m-a)+m+(m+c)+(m-a-b)+20=0 \\
& \Rightarrow 5 m=3 a+2 b-c-20
\end{aligned}
$$

Thus $5 m=2(c+d+a+b)+a-3 c-2 d-20$
$=20+a-3 c-2 d$
$=20+(20-c-d-b)-3 c-2 d$
[aiming for a form where the letters all have negative signs]
$=40-4 c-3 d-b$
and this is maximised when $b=c=d=0$, so that $a=20$
(as $c+d+a+b=20$) and $m=8$
[Then the 5 numbers are $-12,-12,8,8,8$]
Approach 2 (Trial \& Improvement)
One sol' n (satisfying the 2 conditions) is $-10,0,0,0,10$,
So that M (the largest possible value for the median) ≥ 0 (as indicated by the multiple choice options).

The median can then be increased to 5 without changing the $1^{\text {st }}$ and last values, giving $-10,-10,5,5,10$ (the $4^{\text {th }}$ value has to be at least 5 , and if equals 5 , then the $2^{\text {nd }}$ value has to be -10 , to maintain the mean of 0).

The median can then be increased to 8 (as suggested by the MC options) by increasing the $4^{\text {th }} \& 5^{\text {th }}$ values to 8 , which allows the $1^{\text {st }}$ value to be lowered to -12 , which accommodates a $2^{\text {nd }}$ value of -12 (needed to maintain the mean of 0).

Thus, $M \geq 8$
But $M=20$ isn't possible, as the $4^{\text {th }} \& 5^{\text {th }}$ values would then have to be at least 20 , forcing the $1^{\text {st }}$ value to be at least 0 (for the range to be 20). But this would give a mean >0.

So $8 \leq M<20$, and from the $M C$ options available, M must be 8 .

Answer: E

Q19

[A graphical approach looks promising here, but unfortunately turns out to be too complicated.]

The two equations can be rewritten as:
$x^{3}+a x^{2}-b x-c=0(1)$
and $x^{3}-a x^{2}-b x+c=0(2)$
[Given that only the signs of even powers of x differ]
Let $y=-x$
Then (2) becomes $-y^{3}-a y^{2}+b y+c=0$
or $y^{3}+a y^{2}-b y-c=0$, which has the same roots as (1).
So, if (1) has one positive and two negative roots, (2) will have one negative and two positive roots.

Answer: B

Q20

[Begin by looking for something to narrow down the options.]
[Assuming P true doesn't lead immediately to anything tangible.]
Q true $\Rightarrow \mathrm{S}$ true \Rightarrow exactly one of $P R^{\prime} T^{\prime}, P^{\prime} R T^{\prime} \& P^{\prime} R^{\prime} T$ holds
Consider $P R^{\prime} T^{\prime}$: this is possible (an odd number of statements are true, Mr R's first name could be Rupert; both statements made by women are true)

So $Q S P R^{\prime} T^{\prime}$ is possible.
This means that (assuming exactly one of the answers is correct), the answer must be D or H .

Consider H, where exactly 2 statements could be true:
If H holds, then P cannot be true (as 2 is not an odd number).
We have seen that Q true $\Rightarrow 3$ statements are true, so (for H to hold), Q cannot be true.

If R is true, then P is true, but this has been shown not to be the case.
So, if exactly 2 statements are true, then they must be S and T.
But if T is true, then S is not true, so exactly 2 statements is not possible.

Thus H is not possible, and the answer must be \mathbf{D}.

