TMUA 2020 Paper 2 Solutions (11 pages; 30/11/21)

Q1

$x-2=x^{2}+k x+2 \Leftrightarrow x^{2}+(k-1) x+4=0$
Points of intersection occur when the discriminant is nonnegative; ie when $(k-1)^{2}-16 \geq 0$
$\Leftrightarrow(k-1)^{2} \geq 16$
$\Leftrightarrow k-1 \leq-4$ or $k-1 \geq 4$
$\Leftrightarrow k \leq-3$ or $k \geq 5$
Answer: E

Q2

First of all, consider $\tan \theta=2$ when θ is in the $1^{\text {st }}$ quadrant.
Then, from a right-angled triangle with adjacent side 1 and opposite side $2, \cos \theta=\frac{1}{\sqrt{5}}$.

The graph of $\tan \theta$ has a period of 180°, and $\tan \theta=2$ again when θ is in the 3rd quadrant.

Then $\cos \left(\theta+180^{\circ}\right)=\cos \theta \cos 180^{\circ}-\sin \theta \sin 180^{\circ}$
$=\frac{1}{\sqrt{5}}(-1)-0=-\frac{1}{\sqrt{5}}=-\frac{\sqrt{5}}{5}$
Answer: F

Q3
There is a sign error in line (II). It should read:
$2(9 n+1-3 n+1)$

Answer: C

Q4

I is not a counter-example (5 is not greater than 6).
II and III are both counter-examples, as neither can be written in the required form.

Answer: G

Q5

$x \rightarrow \infty \Rightarrow y \rightarrow 1$, so only A or F could be correct.
Also, $y<1$, so that only A can be correct.

Answer: A

Q6

The two sides of the equation are areas under the curve $y=f(x)$.
There is no need for there to be symmetry about the y-axis, and so Condition I is not necessary.

Clearly there is no need for $f(x)$ to be constant, and so Condition II is not necessary.

It is clearly possible for $f(x)$ to be positive for $-5 \leq x \leq 5$, and then $f(x) \neq-f(-x)$, so that Condition III is not necessary.

Answer: A

Q7

If $P Q=Q R, P Q R S$ could be a rhombus, so Condition I is not sufficient.

If the diagonals intersect at right-angles, $P Q R S$ could be a rhombus (the diagonals split it into 4 congruent right-angle triangles). So Condition II is not sufficient.

If $\angle P Q R=\angle Q R S$, then $P Q R S$ could be a rectangle. So Condition III is not sufficient.

Answer: H

Q8

The proof is fully correct.
Answer: E

Q9
$f(4)=4 \sin \left(4 \times \frac{180}{\pi} \circ\right)$
Answer: F

Q10

$0<a+b<c+d$ (1) and $0<a+c<b+d$ (2)
(eg $0<2+4<3+5$ and $0<2+3<4+5$)
Inequality I:
(Consider analogy of tennis doubles pairings: d beats a, whether paired with b or c.)

Result to prove: $d-a>0$
From (1), $d-a>b-c$
From (2), $d-a>c-b$
Either $b=c$, in which case $d-a>0$,
or $b \neq c$, and one of $b-c \& c-b$ is >0, so $d-a>0$
So (I) is true.
Inequality II: False, from the example given at the start (and the tennis analogy).

Inequality III:
From (1), $(a+b)+(c+d)>0+(a+b)>0$
So (III) is true.
Answer: F

Q11

The pattern for $x \& y= \pm 3$ and ± 4 is repeated for ± 99 and \pm 100. As $(-4,3)$ isn't on the spiral, $(-100,99)$ isn't either.

Answer: G

Q12

For the trapezium rule to produce an overestimate, the curve must lie predominantly below the sloping edge of the trapezium.

A, $\mathrm{B} \& \mathrm{C}: f^{\prime \prime}(x)<0$ means that the gradient is decreasing, and so the curve will be as in Diagram 1, where there is an underestimate. So A, B \& C can be ruled out.

Diagram 1

D: The gradient is increasing, and the curve will be as in Diagram 2 , where there is an overestimate. So the answer is D.

Diagram 2
[E and F are not correct, as the condition " $f^{\prime}(x)<0 \& f^{\prime \prime}(x)>$ 0 " is sufficient for there to be an overestimate, but not necessary (" A is true only if B is true" means that $A \Rightarrow B$; ie that B is a necessary condition for A)]

Answer: D

Q13

$\int_{0}^{3}(f(x))^{2} d x+\int_{0}^{3} f(x) d x=\int_{0}^{1} f(x) d x$
$\Rightarrow \int_{0}^{3}(f(x))^{2} d x=-\int_{1}^{3} f(x) d x$
Then, as $\int_{0}^{3}(f(x))^{2} d x \geq 0\left(\right.$ as $\left.(f(x))^{2} \geq 0\right)$,
it cannot be the case that $f(x)>0$ for all x with $1 \leq x \leq 3$ (otherwise $-\int_{1}^{3} f(x) d x<0$).

So I is necessarily true.

II is equivalent to $\int_{0}^{3} f(x) d x-\int_{0}^{1} f(x) d x \leq 0$
LHS $=\int_{1}^{3} f(x) d x=-\int_{0}^{3}(f(x))^{2} d x($ from $(*)) \leq 0$
So II is necessarily true.

Answer: D

Q14

Property P just means that the last m terms of the sequence sum to zero.

Consider the AP $4,3,2,1,0,-1$, where $a d=4(-1)<0$, but property P doesn't hold. So I is not true.
[To see whether a counter-example can be found for II:]
Let the last 2 terms of the sequence be $A, A+d$, such that $A+(A+d)=0 \Rightarrow d=-2 A$; ie d is even Instead, let the last 3 terms of the sequence be
$A, A+d, A+2 d$, such that $A+(A+d)+(A+2 d)=0$
$\Rightarrow d=-A$
So let $A=1$, giving a sequence of $4,3,2,1,0,-1$
So d need not be even, and II is not true.

Answer: A

Q15

The terms of the sequence are
$\frac{\sqrt{3}}{2}, \frac{\sqrt{3}}{2}, 0,-\frac{\sqrt{3}}{2},-\frac{\sqrt{3}}{2}, 0$, and then repeating itself.
The sum will be $\frac{\sqrt{3}}{2}$ when $n=1,4,7,10, \ldots$
ie when n is one more than a multiple of 3

Answer: D

Q16

The first error occurs on line (III):
In order to use the FTC, we would need to write

$$
\frac{d}{d(2 x)}\left(\int_{0}^{2 x} t^{2} d t\right)=(2 x)^{2}
$$

[and then $\frac{d}{d x}\left(\int_{0}^{2 x} t^{2} d t\right)=(2 x)^{2} \cdot \frac{d(2 x)}{d x}=8 x^{2}$]
Answer: D

Q17

Let the two sets be $a 8 b$ and $c 9 d$
(where $a<8<b$ and $c<9<d$)
Then $\frac{a+8+b}{3}=10 \& \frac{c+9+d}{3}=12$,
so that $a+b=22 \& c+d=27$
The smallest possible value for b is 15 (when $a=7$), and the
smallest possible value for d is 20 (when $c=7$).
With $d=20 \& c=7$, the smallest possible value for a is 6 , and the range is then $20-6=14$.
(If instead $b=20$, then $a=2$, so that the range would be at least $20-2=18$, and a larger value for b would result in a smaller value for a (possibly negative), but the range would then be larger still.)

Answer: E

Q18

$a=p$ is possible (with $b x^{2}+c x+d>q x^{2}+r x+s$; eg with $q=b, r=c, d=s+1$), so I need not be true

For II: if $b=q$, then $f(x)-g(x)>0$ for all x
$\Leftrightarrow(a-p) x^{3}+(c-r) x+(d-s)>0$ for all x
No true cubic lies above the x-axis for all x, which means that $a=p$. Then the straight line $y=(c-r) x+(d-s)$ can only lie above the x-axis for all x if its gradient is zero; ie if $c=r$

So II has to be true.
$f(0)-g(0)=d-s$, so that $f(x)-g(x)>0$ means that $d>s$, and so III has to be true

Q19

All the neighbours of Ts must be L. [A]
Also, there must be at least one T amongst the neighbours of an L . [B]

Suppose that the centre square is T. Then, by $[\mathrm{A}]$ and $[\mathrm{B}]$, there is only one solution:

TLT
LTL

TLT

So it is possible for $T=5$ (ie 5 people are telling the truth)
Now suppose that the centre square is L . As each T has to be next to an L , there cannot be more than 4 Ts amongst the 8 outer squares.

So $T \leq 5$.
To establish the minimum value for T :
With an L in the centre, at least one of the squares neighbouring the centre has to be T (by [B]). Suppose, without loss of generality, that it is the top (middle) square. [The grid could be rotated if necessary.] This forces the following:

LTL

? L ?
???

Consider the 2 possible cases:
(1)

LTL
?L?
T??
(2)

LTL
? L ?
L??
$\mathrm{By}[\mathrm{A}] \&[\mathrm{~B}]$, these force:
(1)

LTL
LL?
TL?
(2)

LTL
TL?
L??
For (1), the following is possible:
LTL
LLL

TLT

but the two missing squares cannot both be L (by [B]).
So, for (1), $T>2$

For (2), the missing squares cannnot all be L (by [B]).
So, for (2) also, $T>2$

Hence $3 \leq T \leq 5$.

Answer: E

Q20

Not F, as otherwise B would be true as well.
$A(x \geq 0$ only if $f(x)<0) \equiv x \geq 0 \Rightarrow f(x)<0$
and $B(x<0$ if $f(x) \geq 0) \equiv f(x) \geq 0 \Rightarrow x<0$
A and B are contrapositives of each other, and therefore $A \equiv B$, so not A or B (as if A is true, then B will be true, and vice-versa)

Similarly, $D \equiv E$, so not D or E
Answer: C

