TMUA - Important Ideas (17 pages; 28/9/21)

## Contents

(A) Tests for divisibility
(B) Proof
(C) Series
(D) Factorisations
(E) Integer solutions
(F) Trinomial expansions
(G) Equating coefficients
(H) Inequalities
(I) Logarithms
(J) Quadratics
(K) Polynomials
(L) Turning Points
(M) Greatest or least value of a function
(N) Cubics
(0) Transformations
(P) Trigonometry
(Q) Symmetry
(R) Counting

## (A) Tests for divisibility

(1) If the sum of the digits of a number is a multiple of 3 , then the number itself is a multiple of 3 ; and similarly for 9 .
(2) $11 \times 325847=3584317$
and $3-5+8-4+3-1+7=11$, which is a multiple of 11
This is true in all cases: If $a-b+c-d+\cdots-z$ is a multiple of 11 , then $a b c d \ldots z$ is a multiple of 11 .
[and also for $a-b+c-d+\cdots+y$ ]
(B) Proof
(1) As an alternative to proving that $A \Rightarrow B$ and $B \Rightarrow A$, it may be easier to prove that $A \Rightarrow B$ and $A^{\prime} \Rightarrow B^{\prime}$ (as $A^{\prime} \Rightarrow B^{\prime}$ is equivalent to $B \Rightarrow A$ ).

## (C) Series

(1) $\sum_{r=1}^{n} r=1+2+3+\cdots+n=\frac{1}{2} n(n+1)$
[Informal proof: The average size of the terms being added is $\frac{1}{2}(1+n)$, and there are $n$ terms.]

## (D) Factorisations

(1)(i) $x^{2}-y^{2}=(x+y)(x-y)$
(ii) $x^{3}-y^{3}=(x-y)\left(x^{2}+x y+y^{2}\right)$
[Let $f(x)=x^{3}-y^{3}$. Then $f(y)=0$, and so $x-y$ is a factor of $x^{3}-y^{3}$, by the Factor Theorem.]
$x^{3}+y^{3}=(x+y)\left(x^{2}-x y+y^{2}\right)$
(iii) $x^{n}-y^{n}=(x-y)\left(x^{n-1}+x^{n-2} y+\cdots+x y^{n-2}+y^{n-1}\right)$
or $(x+y)\left(x^{n-1}-x^{n-2} y+\cdots+x y^{n-2}-y^{n-1}\right)$, if $n$ is even
$x^{n}+y^{n}=(x+y)\left(x^{n-1}-x^{n-2} y+\cdots-x y^{n-2}+y^{n-1}\right)$ if $n$ is odd
(2) Let $f(n)$ be the number of factors of $n$ (including 1 ).

If $n=p q$, where $p \& q$ have no common factors (other than 1 ), then $f(n)=f(p) f(q)$.
[eg $100=2^{2} \times 5^{2}$; factors are obtained from
$\{1,2,4\}$ with $\{1,5,25\}$, giving a total of $3 \times 3=9$ factors:
$1,5,25,2,10,50,4,20,100$ ]

## (E) Integer solutions

eg $x y-8 x+6 y=90$
can be rearranged to $(x+6)(y-8)=42$

## (F) Trinomial expansions

(i) $(a+b+c)^{2}=\left(a^{2}+b^{2}+c^{2}\right)+2(a b+a c+b c)$
(ii) $(a+b+c)^{3}=\left(a^{3}+b^{3}+c^{3}\right)$
$+3\left(a^{2} b+a^{2} c+b^{2} a+b^{2} c+c^{2} a+c^{2} b\right)$
$+6 a b c$

## (G) Equating coefficients

Example: To divide $f(x)=x^{3}+x^{2}-11 x+10$ by $x-2$
First of all, $f(2)=8+4-22+10=0$, so that there is no remainder.

Then $x^{3}+x^{2}-11 x+10=(x-2)\left(x^{2}+a x-5\right)$
Equating coefficients of $x^{2}: 1=a-2$, so that $a=3$
(Check: Equating coefficients of $x$ : $-11=-5-2 a$, so that $a=3$ ) This method is usually quicker than long division.
(H) Inequalities (see Pure: "Inequalities" for further details)
(1) Beware of multiplying inequalities by a quantity that is (or could be) negative (eg $\log (0.5)$ ).
(2) If $a$ and $b$ are $\geq 0$, then $a>b \Leftrightarrow a^{2}>b^{2}$ (as $y=x^{2}$ is an increasing function for $x \geq 0$ ).
(3) If an expression can be arranged into the form $(a-b)^{2}$, then this will be non-negative.
(4) Methods for solving $\frac{x+1}{x-2}<2 x$

Method 1: Multiply both sides by $(x-2)^{2}$ (as this is positive, assuming that $x \neq 2$ ). The resulting cubic will have a factor of $x-2$. Consider the regions of the graph.

Method 2: Treat the cases $x-2<0$ and $x-2>0$ separately

Method 3: Rearrange as $\frac{x+1}{x-2}-2 x<0$, and write the LHS as a single fraction. Consider the critical points where either the numerator or the denominator is zero.

Method 4: Sketch $y=\frac{x+1}{x-2}$ and $y=2 x$, and consider the points of intersection.

## (I) Logarithms

(1) $\log _{a} b=c \Leftrightarrow a^{c}=b$
(2) eg $3+2 \log _{2} 5=3 \log _{2} 2+\log _{2}\left(5^{2}\right)$
$=\log _{2}\left(2^{3}\right)+\log _{2}\left(5^{2}\right)=\log _{2}(8 \times 25)=\log _{2}(200)$
(3) $\log _{a} b \log _{b} c=\log _{a} c$ or $\log _{b} c=\frac{\log _{a} c}{\log _{a} b}$

Proof: Let $b=a^{x} \& c=b^{y}$
Then $c=\left(a^{x}\right)^{y}=a^{x y}$
and $\log _{a} c=x y=\log _{a} b \log _{b} c$

Special case: $\log _{b} c=\frac{1}{\log _{c} b}$
(4) As $\log _{8} 8=1$ and $\log _{8} 64=2$, and as $y=\log _{8} x$ is a concave function ( $\frac{d y}{d x}$ is decreasing; ie $\frac{d^{2} y}{d x^{2}}<0$ ), linear interpolation
$\Rightarrow \log _{8}\left[\frac{1}{2}(8+64)\right]>\frac{1}{2}(1+2)$
ie $\log _{8} 36>\frac{3}{2}$
(5) To find an upper bound for eg $\log _{2} 3$ :

Suppose that $\log _{2} 3<\frac{m}{n}$
Then $3<2^{\left(\frac{m}{n}\right)}$ and $3^{n}<2^{m}$
As $243=3^{5}<2^{8}=256, \log _{2} 3<\frac{8}{5}$
[and $\frac{8}{5}$ is a reasonably low upper bound, as $243 \& 256$ are reasonably close]
(6) eg $\log _{2} 12=\log _{2}(3 \times 4)=\log _{2} 3+\log _{2} 4<\frac{8}{5}+2=\frac{18}{5}$, from (5)
(7) eg $\log _{36} 8=\frac{1}{\log _{8} 36}<\frac{2}{3}$, from (4)
(8) Example: Show that $\log _{5} 10<\frac{3}{2}$
$\log _{5} 10<\frac{3}{2} \Leftrightarrow 10<5^{\left(\frac{3}{2}\right)}$ (as the $\log$ function is increasing)
$\Leftrightarrow 10^{2}<5^{3} \Leftrightarrow 100<125$

## (J) Quadratics

(1) Quadratic Functions

Example: $y=x^{2}-2 x-3$
$x^{2}-2 x-3=(x+1)(x-3)$
Also $x^{2}-2 x-3=(x-1)^{2}-4$
The minimum point of $(1,-4)$ lies on the line of symmetry of the curve, which is equidistant from the two roots of $x^{2}-2 x-3=0$ : $-1 \& 3$.

Also, from the quadratic formula (which is itself derived by completing the square on $\left.a x^{2}+b x+c\right)$ :
$x=\frac{2 \pm \sqrt{4+12}}{2}=1 \pm 2$
Thus the roots of $x^{2}-2 x-3=0$ lie the same distance either side of the line of symmetry of the curve.
(2) Factorisation of quadratics

Example: $f(x)=6 x^{2}+x-12$
We need to find $A$ and $B$ such that $A+B=1$ (the coefficient of $x$ ) and $A B=-72$ (the product of the coefficient of $x^{2}$ and the constant term)
$A=9$ and $B=-8$ satisfy this
Then $f(x)=6 x^{2}+9 x-8 x-12$
$=3 x(2 x+3)-4(2 x+3)$
$=(3 x-4)(2 x+3)$
Alternatively, $f(x)=6 x^{2}-8 x+9 x-12$
$=2 x(3 x-4)+3(3 x-4)$
$=(2 x+3)(3 x-4)$

## (K) Polynomials

(1) Integer roots

Let $f(x)=x^{n}+a_{n-1} x^{n-1}+\cdots+a_{2} x^{2}+a_{1} x+a_{0}$
where $n \geq 2$ and the $a_{i}$ are integers, with $a_{0} \neq 0$.
Then it can be shown that any rational root of the equation $f(x)=0$ will be an integer.

## Proof

Suppose that there is a rational root $\frac{p}{q}$, where $p \& q$ are integers with no common factor greater than 1 and $q>0$.

Then $\left(\frac{p}{q}\right)^{n}+a_{n-1}\left(\frac{p}{q}\right)^{n-1}+\cdots+a_{2}\left(\frac{p}{q}\right)^{2}+a_{1}\left(\frac{p}{q}\right)+a_{0}=0$
and, multiplying by $q^{n-1}$ :
$\frac{p^{n}}{q}+a_{n-1} p^{n-1}+a_{n-2} p^{n-2} q+\cdots+a_{1} p q^{n-2}+a_{1} q^{n-1}=0$
Then, as all the terms from $a_{n-1} p^{n-1}$ onwards are integers, it follows that $\frac{p^{n}}{q}$ is also an integer, and hence $q=1$ (as $p \& q$ have no common factor greater than 1 ), and the root is an integer.

## (L) Turning Points

(1) $\frac{d^{2} y}{d x^{2}} \neq 0$ is a sufficient (but not necessary) condition for a turning point (eg $\frac{d^{2} y}{d x^{2}}=0$ at $x=0$ for $y=x^{4}$ )
(2) A necessary and sufficient condition for a turning point is that the 1 st non-zero derivative of the function should be of even order (and $\geq 2)\left(\operatorname{eg} y=x^{4}\right.$, where $\frac{d y}{d x}=\frac{d^{2} y}{d x^{2}}=\frac{d^{3} y}{d x^{3}}=0$, but
$\left.\frac{d^{4} y}{d x^{4}} \neq 0\right)$
(3) To find the turning points of $y=\frac{x^{2}-2 x+2}{x^{2}-3 x-4}$, consider the quadratic $\frac{x^{2}-2 x+2}{x^{2}-3 x-4}=k$, with $b^{2}-4 a c=0$ (to give a quadratic in $k)$.

## (M) Greatest or least value of a function

(1) Beware of establishing the greatest or least value of a function from stationary points: these only indicate local maxima and minima.

Also, a greatest or least value may occur at a boundary of the domain.
(2) Possibilities for demonstrating that $f(x) \geq 0$
(i) $f(x)=[g(x)]^{2}+[h(x)]^{2}($ for all $x)$
(ii) For $x \geq a$ : establish that $f(a) \geq 0$ and that $f^{\prime}(x) \geq 0$ for $x \geq a$.

## (N) Cubics

(1) Cubics always have (exactly) one point of inflexion:
$f^{\prime}(x)=3 a x^{2}+2 b x+c$ and $f^{\prime \prime}(x)=6 a x+2 b$
So $f^{\prime \prime}(x)=0 \Rightarrow x=-\frac{b}{3 a}$
[For a general function, $f^{\prime \prime}(x)=0$ is a necessary (but not sufficient) condition for a point of inflexion (which is a turning point of the gradient). However, for a cubic it is a sufficient condition as well.]
(2) There is rotational symmetry about the point of inflexion, and this implies that the point of inflexion is halfway between the turning points (if they exist).
(3) The shape of a cubic will be determined by the number of stationary points ( 0,1 or 2 );

Shape 1: $y=x^{3}+x(0$ stationary points $):$


Shape 2: $y=x^{3}$ (1 stationary point)


Shape 3: $y=x^{3}-x$ (2 stationary points):


## (0) Transformations

(1) Translation of $\binom{a}{b}: y=f(x) \rightarrow y-b=f(x-a)$
(2) Stretch of scale factor $k$ in the $x$ direction (eg if $k=2$, graph of $y=x^{2}$ is stretched outwards, so that the $x$-coordinates are doubled): $y=f(x) \rightarrow y=f\left(\frac{x}{k}\right)$
Stretch of scale factor $k$ in the $y$ direction: $y=f(x) \rightarrow \frac{y}{k}=f(x)$
(3) Note that, at each stage of a composite transformation, we must be replacing $x$ by either $x+a$ (where $a$ can be negative) or $k x$ (and similarly for $y$ ).
(4) Reflection in the line $x=L: y=f(x) \rightarrow y=f(2 L-x)$

Reflection in the line $y=L: y=f(x) \rightarrow 2 L-y=f(x)$
Special cases:
Reflection in the line $x=0: f(x) \rightarrow f(-x)$
Reflection in the line $y=0: y=f(x) \rightarrow-y=f(x)$
(5) Example: To obtain $y=\sin (2 x+60)$ from $y=\sin x$, either (a) stretch by scale factor $\frac{1}{2}$ in the $x$ direction, to give $y=\sin (2 x)$, and then translate by $\binom{-30}{0}$, to give
$y=\sin (2[x+30])=\sin (2 x+60)$
or (b) translate by $\binom{-60}{0}$, to give $y=\sin (x+60)$, and then stretch by scale factor $\frac{1}{2}$ in the $x$ direction, to give $y=\sin (2 x+60)$ [It is perhaps more awkward to produce a sketch by method (b).]
[Note that, at each stage, we are either replacing $x$ by $k x$, or by $x \pm a]$
(6) A rotation of $180^{\circ}$ is equivalent to a reflection in the line $x=0$, followed by a reflection in the line $y=0$, so that $y=f(x)$ $\rightarrow y=-f(-x)$

## (P) Trigonometry

(1) Relation between $\sin$ and $\cos$


Referring to the diagram,
$\sin \theta=\frac{b}{c}=\cos \phi=\cos \left(90^{\circ}-\theta\right)$
and $\cos \theta=\frac{a}{c}=\sin \phi=\sin \left(90^{\circ}-\theta\right)$
(The 'co' in cosine stands for 'complementary', because $\theta$ and $90^{\circ}-\theta$ are described as complementary angles.)
(2) Key Results
(A) Compound Angle formulae
$\sin (\theta+\phi)=\sin \theta \cos \phi+\cos \theta \sin \phi$
$\cos (\theta+\phi)=\cos \theta \cos \phi-\sin \theta \sin \phi$
(B) $\sin \left(\theta \pm 360^{\circ}\right)=\sin \theta ; \cos \left(\theta \pm 360^{\circ}\right)=\cos \theta$
$\cos (-\theta)=\cos \theta ; \sin (-\theta)=-\sin \theta$
$\sin \left(180^{\circ}-\theta\right)=\sin \theta ; \cos \left(180^{\circ}-\theta\right)=-\cos \theta$
$\sin \theta=\cos \left(90^{\circ}-\theta\right) ; \cos \theta=\sin \left(90^{\circ}-\theta\right)$

## (C) Translations

$\sin \left(\theta+90^{\circ}\right)$ is $\sin \theta$ translated $90^{\circ}$ to the left, which is $\cos \theta$ $\sin \left(\theta-90^{\circ}\right)$ is $\sin \theta$ translated $90^{\circ}$ to the right, which is $-\cos \theta$ $\cos \left(\theta+90^{\circ}\right)$ is $\cos \theta$ translated $90^{\circ}$ to the left, which is $-\sin \theta$ $\cos \left(\theta-90^{\circ}\right)$ is $\cos \theta$ translated $90^{\circ}$ to the right, which is $\sin \theta$
(3) To solve eg $\sin \left(2 x-60^{\circ}\right)=0.5 ; \quad 0 \leq x \leq 360^{\circ}$ :

Let $u=2 x-60^{\circ}$ and note that $-60^{\circ} \leq u \leq 660^{\circ}$
Having found the solutions for $u$ (such that $-60^{\circ} \leq u \leq 660^{\circ}$ ), the solutions for $x$ are obtained from $x=\frac{1}{2}(u+60)$.
(4) Starting with $\cos ^{2} \theta+\sin ^{2} \theta=1$ (A) and $\cos ^{2} \theta-\sin ^{2} \theta=\cos 2 \theta(\mathrm{~B})$,
$\frac{1}{2}[(A)+(B)] \Rightarrow \cos ^{2} \theta=\frac{1}{2}(1+\cos 2 \theta)$ and $\frac{1}{2}[(A)-(B)] \Rightarrow \sin ^{2} \theta=\frac{1}{2}(1-\cos 2 \theta)$

## (Q) Symmetry

(1) Symmetry about $x=a: f(a-\lambda)=f(a+\lambda)$ for all $\lambda$
[Special case: symmetry about the $y$-axis: $f(-x)=f(x)$ ]
Alternatively, $f(2 a-x)=f(x)$ for all $x$ [setting $x=a+\lambda]$
Example: $\sin (\pi-\theta)=\sin \theta$, and the sine curve has symmetry about $\theta=\frac{\pi}{2}$
(2) If you are asked to sketch a curve defined for $x \in[a, b]$, consider whether it might have symmetry about the mid-point $\frac{a+b}{2}$.

## (R) Counting

(1) Selections
(i) Ordered selections with repetition

Number of ways of selecting $r$ items from $n$, if repetitions are allowed, and order is important $=n^{r}$
(ii) Ordered selections without repetition

Number of ways of selecting $r$ items from $n$, if repetitions are not allowed, and order is important
$=n(n-1) \ldots(n-[r-1])=n(n-1) \ldots(n-r+1)$
[Known as a Permutation]
$P(n, r)$ or ${ }^{n} P_{r}=\frac{n!}{(n-r)!}=n(n-1) \ldots(n-r+1)$
(iii) Unordered selections without repetition

Number of ways of selecting $r$ items from $n$, if repetitions are not allowed, and order is not important
[Known as a Combination.]
$C(n, r)$ or ${ }^{n} C_{r}$ or $\binom{n}{r}=\frac{n!}{r!(n-r)!}=\frac{n(n-1) \ldots(n-r+1)}{r!}$
[ ${ }^{n} C_{r}$ can be obtained from ${ }^{n} P_{r}=\frac{n!}{(n-r)!}$ by dividing by $r$ ! , to remove duplication (the ${ }^{n} P_{r}$ ordered ways can be divided into groups of $r$ !, containing the same items, but in a different order).]
(iv) Unordered selections with repetition

Number of ways of selecting $r$ items from $n$, if repetitions are allowed, and order is not important
eg $B B C E$ selected from $A B C D E F(r=4, n=6)$
write as $|X X| X||X|$
(| indicates that we are moving on to the next letter, and XX indicates that we are selecting 2 items from the current letter: so $|X X| X||X|$ means: move on to B (without selecting any As); then
select 2 Bs; then move on to the Cs; select 1 C ; move on to D , and then on to E; select 1 E ; then move on to F , but select no Fs)
$=$ Number of ways of choosing $r$ positions for the Xs,
out of the $n-1 \mid s$ and $r$ Xs (giving a total of $n-1+r$ )
$=\binom{n-1+r}{r}$

