Series - Q7 [Practice/M] (20/6/21)

Starting from $\sum_{r=1}^{n}(r+1)^{2}=\left(\sum_{r=1}^{n} r^{2}\right)+2\left(\sum_{r=1}^{n} r\right)+n$, make the substitution $R=r+1$, to prove that $\sum_{r=1}^{n} r=\frac{1}{2} n(n+1)$

Solution

Let $R=r+1$, so that
LHS $=\sum_{R=2}^{n+1} R^{2}=\left(\sum_{R=1}^{n} R^{2}\right)+(n+1)^{2}-1$
Thus $\left(\sum_{R=1}^{n} R^{2}\right)+(n+1)^{2}-1=\left(\sum_{r=1}^{n} r^{2}\right)+\left(2 \sum_{r=1}^{n} r\right)+n$, As $\left(\sum_{R=1}^{n} R^{2}\right)$ and $\left(\sum_{r=1}^{n} r^{2}\right)$ are equal, it follows that
$2 \sum_{r=1}^{n} r=(n+1)^{2}-1-n=n^{2}+n=n(n+1)$
and so $\sum_{r=1}^{n} r=\frac{1}{2} n(n+1)$

Note: This method is a variant on the "Method of Differences".

