General

Q5 [Practice/E]

By considering $\sum_{r=1}^{n}(r+1)^{3}-\sum_{r=1}^{n} r^{3}\left(^{*}\right)$, show that
$\sum_{r=1}^{n} r^{2}=\frac{1}{6} n(n+1)(2 n+1)$ [assuming that $\sum_{r=1}^{n} r=\frac{1}{2} n(n+1)$]

Q6 [Practice/H]

By considering $\sum_{r=1}^{n}(r+1)^{4}$, show that
$\sum_{r=1}^{n} r^{3}=\frac{1}{4} n^{2}(n+1)^{2}$ [The results for $\sum_{r=1}^{n} r$ and $\sum_{r=1}^{n} r^{2}$ can be assumed.]

Q7 [Practice/M]

Starting from $\sum_{r=1}^{n}(r+1)^{2}=\left(\sum_{r=1}^{n} r^{2}\right)+2\left(\sum_{r=1}^{n} r\right)+n$, make the substitution $R=r+1$, to prove that $\sum_{r=1}^{n} r=\frac{1}{2} n(n+1)$

Method of Differences

Q1 [4 marks]

Given that $\frac{2 r+1}{r^{2}(r+1)^{2}}=\frac{1}{r^{2}}-\frac{1}{(r+1)^{2}}$, use the method of differences to find $\sum_{r=1}^{n} \frac{2 r+1}{r^{2}(r+1)^{2}}$

Q2 [3 marks]

Given that $\frac{1}{2 r}-\frac{1}{2(r+2)}=\frac{1}{r(r+2)}$, use the method of differences to find $\sum_{r=1}^{n} \frac{1}{r(r+2)}$ [3 marks]

Q3 [5 marks]

Given that $\frac{1}{2 r-1}-\frac{2}{2 r+1}+\frac{1}{2 r+3}=\frac{8}{(2 r-1)(2 r+1)(2 r+3)}$, use the method of differences to show that
$\sum_{r=1}^{n} \frac{1}{(2 r-1)(2 r+1)(2 r+3)}=\frac{n(n+2)}{3(2 n+1)(2 n+3)}[5$ marks $]$

Q4 [5 marks]

Given that $\frac{1}{r+1}-\frac{2}{r+2}+\frac{1}{r+3}=\frac{2}{(r+1)(r+2)(r+3)}$, use the method of differences to show that $\sum_{r=1}^{n} \frac{1}{(r+1)(r+2)(r+3)}=\frac{n(n+5)}{12(n+2)(n+3)}$ [5 marks]

