Given that $\boldsymbol{a}, \boldsymbol{b} \& \boldsymbol{c}$ are linearly independent vectors, establish whether the vectors $\boldsymbol{a}+\boldsymbol{b}, \boldsymbol{a}-\boldsymbol{c} \& \boldsymbol{a}+\boldsymbol{b}+\boldsymbol{c}$ are linearly independent.

Solution

Method 1

Suppose that $\alpha(\boldsymbol{a}+\boldsymbol{b})+\beta(\boldsymbol{a}-\boldsymbol{c})+\gamma(\boldsymbol{a}+\boldsymbol{b}+\boldsymbol{c})=0$
Then $(\alpha+\beta+\gamma) \boldsymbol{a}+(\alpha+\gamma) \boldsymbol{b}+(-\beta+\gamma) \boldsymbol{c}=0$
As $\boldsymbol{a}, \boldsymbol{b} \& \boldsymbol{c}$ are linearly independent,
$\alpha+\beta+\gamma=0$
$\alpha+\gamma=0$
$-\beta+\gamma=0$
giving $\alpha+\beta=0$
and hence $\gamma=0$ and so $\alpha=\beta=0$ also,
and so $\boldsymbol{a}+\boldsymbol{b}, \boldsymbol{a}-\boldsymbol{c} \& \boldsymbol{a}+\boldsymbol{b}+\boldsymbol{c}$ are linearly independent.

Method 2

$\boldsymbol{a}, \boldsymbol{b} \& \boldsymbol{c}$ are linearly independent vectors $\Rightarrow|\boldsymbol{a} \boldsymbol{b} \boldsymbol{c}|=0$
$\Rightarrow|\boldsymbol{a}+\boldsymbol{b}, \boldsymbol{b}, \boldsymbol{c}+(\boldsymbol{a}+\boldsymbol{b})|=0$
$[$ since $|\boldsymbol{a}+\boldsymbol{b}, \boldsymbol{b}, \boldsymbol{c}|=|\boldsymbol{a}, \boldsymbol{b}, \boldsymbol{c}|$:
As an example, consider
$\left|\begin{array}{ll}p+r & r \\ q+s & s\end{array}\right|=(p+r) s-(q+s) r=(p s-q r)+r s-s r$
$=\left|\begin{array}{ll}p & r \\ q & s\end{array}\right|$; also $\left.|k \boldsymbol{a} \boldsymbol{b} \boldsymbol{c}|=k|\boldsymbol{a} \boldsymbol{b} \boldsymbol{c}| \quad\right]$

Then, if $\boldsymbol{a}+\boldsymbol{b}, \boldsymbol{a}-\boldsymbol{c} \& \boldsymbol{a}+\boldsymbol{b}+\boldsymbol{c}$ are in fact linearly independent, we want to be able to obtain $\boldsymbol{a}-\boldsymbol{c}$ by adding
multiples of $\boldsymbol{a}+\boldsymbol{b} \& \boldsymbol{a}+\boldsymbol{b}+\boldsymbol{c}$ to \boldsymbol{b}. In fact, because \boldsymbol{b} can be replaced with kb , we can look for a relation of the form:
$\boldsymbol{a}-\boldsymbol{c}=k \boldsymbol{b}+\lambda(\boldsymbol{a}+\boldsymbol{b})+\mu(\boldsymbol{a}+\boldsymbol{b}+\boldsymbol{c})$
Equating coefficients of the linearly independent $\mathbf{a}, \mathbf{b} \& \mathbf{c}$:
$1=\lambda+\mu ; \quad 0=\mathrm{k}+\lambda+\mu ;-1=\mu$
So $\mu=-1, \lambda=2 \& k=-1$
Thus $|\boldsymbol{a}+\boldsymbol{b}, \boldsymbol{a}-\boldsymbol{c}, \boldsymbol{c}+(\boldsymbol{a}+\boldsymbol{b})|=0$,
so that the 3 vectors are linearly independent

