Find the angle between adjacent sloping faces of a right squarebased pyramid, where the faces are equilateral triangles (as shown in Figure 1).

Figure 1

Solution

Without loss of generality, we can assume that the sides of the equilateral triangles forming the faces have length 2 . The medians of the equilateral triangles leading to the vertex then have length $\sqrt{3}$.

Figure 2
Referring to figure 2, we can form the right-angled triangle with corners at the vertex (V), the centre of the base of the pyramid (B), and the base of a median (A). By Pythagoras, $V B=\sqrt{2}$.

Create x and y axes along the bottom of two adjacent sloping faces of the pyramid, with z being vertical (so that the origin is at one corner of the base of the pyramid).

Then a vector equation of the plane containing one face and the y axis is:
$\underline{r}=\left(\begin{array}{l}0 \\ 0 \\ 0\end{array}\right)+\lambda\left(\begin{array}{l}0 \\ 2 \\ 0\end{array}\right)+\mu\left(\begin{array}{c}1 \\ 1 \\ \sqrt{2}\end{array}\right)$,
since the plane contains the origin, the point $(0,2,0)$ and the point $(1,1, \sqrt{2})$, which is V (these are the 3 corners of the face).

Converting to a Cartesian equation, we have
$x=\mu, y=2 \lambda+\mu$ and $z=\mu \sqrt{2}$
so that $z=x \sqrt{2}$, and the equation can be written as $\sqrt{2} x+0 y-$ $z=0$.

Hence this face of the pyramid has direction vector $\left(\begin{array}{c}\sqrt{2} \\ 0 \\ -1\end{array}\right)$
or $\left(\begin{array}{c}-\sqrt{2} \\ 0 \\ 1\end{array}\right)$, to ensure that it is pointing away from the inside of the pyramid.

Similarly, the direction vector of the plane containing one face and the x-axis is $\left(\begin{array}{c}0 \\ -\sqrt{2} \\ 1\end{array}\right)$.

The angle between the outward-pointing direction vectors of these faces is then given by
$\cos \theta=\frac{\left(\begin{array}{c}-\sqrt{2} \\ 0 \\ 1\end{array}\right) \cdot\left(\begin{array}{c}0 \\ -\sqrt{2} \\ 1\end{array}\right)}{\left|\left(\begin{array}{c}-\sqrt{2} \\ 0 \\ 1\end{array}\right)\right|\left|\left(\begin{array}{c}0 \\ -\sqrt{2} \\ 1\end{array}\right)\right|}=\frac{1}{3}$

Figure 3

Referring to Figure 3, the angle that we require is $\phi=180-\theta$, and $\cos \phi=-\cos \theta=-\frac{1}{3}$

Thus $\phi=\cos ^{-1}\left(-\frac{1}{3}\right)=109.5^{\circ}(1 \mathrm{dp})$

