STEP/Vectors Q6 (30/6/23)

In the diagram below, OABC is a square, M is the midpoint of OA , $B Q$ is a quarter of $B C$, and P is the intersection of $A C$ and $M Q$.

If $\underline{a}=\overrightarrow{O A}$ and $\underline{c}=\overrightarrow{O C}$, show that $\overrightarrow{O P}=\frac{3}{5} \underline{a}+\frac{2}{5} \underline{c}$

Solution

Let $\overrightarrow{O P}=\alpha \underline{a}+\gamma \underline{c}$
To take account of the fact that P lies on AC, we can write:
$\overrightarrow{A P}=\lambda \overrightarrow{A C}$,
so that $\overrightarrow{O P}-\overrightarrow{O A}=\lambda(\overrightarrow{O C}-\overrightarrow{O A})$
and $\alpha \underline{a}+\gamma \underline{c}-\underline{a}=\lambda \underline{c}-\lambda \underline{a}$
or $(\alpha-1+\lambda) \underline{a}=(\lambda-\gamma) \underline{c}$
Then, as \underline{a} and \underline{c} aren't parallel, the only possibility is that $\alpha-1+\lambda=0$ and $\lambda-\gamma=0$
so that $\alpha-1+\gamma=0$ (1)

Similarly, to take account of the fact that P lies on $M Q$, we can write: $\overrightarrow{M P}=\mu \overrightarrow{M Q}$,
so that $\overrightarrow{O P}-\overrightarrow{O M}=\mu(\overrightarrow{M O}+\overrightarrow{O C}+\overrightarrow{C Q})$
and $\alpha \underline{a}+\gamma \underline{c}-\frac{1}{2} \underline{a}=\mu\left(-\frac{1}{2} \underline{a}+\underline{c}+\frac{3}{4} \underline{a}\right)$
or $\left(\alpha-\frac{1}{2}-\frac{1}{4} \mu\right) \underline{a}=(\mu-\gamma) \underline{c}$
and so, as before, $\alpha-\frac{1}{2}-\frac{1}{4} \mu=0$ and $\mu-\gamma=0$,
giving $\alpha-\frac{1}{2}-\frac{1}{4} \gamma=0$
Then, subtracting (2) from (1) gives
$-\frac{1}{2}+\frac{5}{4} \gamma=0$, so that $\gamma=\frac{2}{5}$, and $\alpha=1-\gamma=\frac{3}{5}$
and $\overrightarrow{O P}=\frac{3}{5} \underline{a}+\frac{2}{5} \underline{c}$, as required.

