STEP/Vectors Q6 (30/6/23)

In the diagram below, OABC is a square, M is the midpoint of OA, BQ is a quarter of BC, and P is the intersection of AC and MQ.

If $\underline{a} = \overrightarrow{OA}$ and $\underline{c} = \overrightarrow{OC}$, show that $\overrightarrow{OP} = \frac{3}{5}\underline{a} + \frac{2}{5}\underline{c}$

Solution

Let
$$\overrightarrow{OP} = \alpha \underline{a} + \gamma \underline{c}$$

To take account of the fact that P lies on AC, we can write:

$$\overrightarrow{AP} = \lambda \overrightarrow{AC} ,$$
so that $\overrightarrow{OP} - \overrightarrow{OA} = \lambda (\overrightarrow{OC} - \overrightarrow{OA})$
and $\alpha \underline{a} + \gamma \underline{c} - \underline{a} = \lambda \underline{c} - \lambda \underline{a}$
or $(\alpha - 1 + \lambda) \underline{a} = (\lambda - \gamma) \underline{c}$
Then, as \underline{a} and \underline{c} aren't parallel, the only possibility is that
 $\alpha - 1 + \lambda = 0$ and $\lambda - \gamma = 0$

so that $\alpha - 1 + \gamma = 0$ (1)

Similarly, to take account of the fact that P lies on MQ, we can write: $\overrightarrow{MP} = \mu \overrightarrow{MQ}$, so that $\overrightarrow{OP} - \overrightarrow{OM} = \mu (\overrightarrow{MO} + \overrightarrow{OC} + \overrightarrow{CQ})$ and $\alpha \underline{a} + \gamma \underline{c} - \frac{1}{2} \underline{a} = \mu (-\frac{1}{2} \underline{a} + \underline{c} + \frac{3}{4} \underline{a})$ or $\left(\alpha - \frac{1}{2} - \frac{1}{4}\mu\right) \underline{a} = (\mu - \gamma)\underline{c}$ and so, as before, $\alpha - \frac{1}{2} - \frac{1}{4}\mu = 0$ and $\mu - \gamma = 0$, giving $\alpha - \frac{1}{2} - \frac{1}{4}\gamma = 0$ (2) Then, subtracting (2) from (1) gives $-\frac{1}{2} + \frac{5}{4}\gamma = 0$, so that $\gamma = \frac{2}{5}$, and $\alpha = 1 - \gamma = \frac{3}{5}$ and $\overrightarrow{OP} = \frac{3}{5} \underline{a} + \frac{2}{5} \underline{c}$, as required.