STEP/Vectors Q5 (30/6/23)

Given that the centre of mass of a triangular lamina lies $2 / 3$ of the way along any of the medians, prove that it has position vector $\frac{1}{3}$ $(\underline{a}+\underline{b}+\underline{c})$.

Solution

$$
\begin{aligned}
\overrightarrow{O G} & =\overrightarrow{O A}+\overrightarrow{A G} \\
& =\underline{a}+\frac{2}{3} \overrightarrow{A M} \\
& =\underline{a}+\frac{2}{3} \cdot 1 / 2(\overrightarrow{A B}+\overrightarrow{A C}) \\
& =\underline{a}+\frac{1}{3}[(\underline{b}-\underline{a})+(\underline{c}-\underline{a})] \\
& =\frac{1}{3}(\underline{a}+\underline{b}+\underline{c})
\end{aligned}
$$

So if $\underline{a}=\binom{a_{x}}{a_{y}}$ etc, $\overrightarrow{O G}=\binom{\frac{1}{3}\left(a_{x}+b_{x}+c_{x}\right)}{\frac{1}{3}\left(a_{y}+b_{y}+c_{y}\right)}$

