STEP/Vectors Q4 (30/6/23)

Prove that the centre of mass of a triangular lamina lies $2 / 3$ of the way along any of the medians.

Let $\overrightarrow{O C}=\lambda \overrightarrow{O M_{1}} \& \overrightarrow{A C}=\mu \overrightarrow{A M_{2}}$
[standard technique: represents the fact that C lies on the line $O M_{1}$]

Also, $\overrightarrow{O C}=\underline{a}+\overrightarrow{A C}$ (2) [standard technique: 2 ways of getting to the same place]

Substitute (1) into (2) $\Rightarrow \lambda \overrightarrow{O M_{1}}=\underline{a}+\mu \overrightarrow{A M_{2}}$
Now, $\overrightarrow{O M_{1}}=1 / 2(\underline{a}+\underline{b}) \& \overrightarrow{A M_{2}}=1 / 2 \underline{b}-\underline{a}$
Substitute (4) into (3) $\Rightarrow 1 / 2 \lambda(\underline{a}+\underline{b})=\underline{a}+\mu(1 / 2 \underline{b}-\underline{a})$
$\Rightarrow\left(\frac{\lambda}{2}+\mu-1\right) \underline{a}+\left(\frac{\lambda}{2}-\frac{\mu}{2}\right) \underline{b}=0$
Provided $\underline{a} \& \underline{b}$ are not parallel, there is only one way of expressing a vector as a combination of $\underline{a} \& \underline{b}$

In this case, $\frac{\lambda}{2}+\mu-1=0 \& \frac{\lambda}{2}-\frac{\mu}{2}=0$
[standard technique: equivalent to equating coefficients of $\underline{a} \&$ of \underline{b} in (5)]

Then (6) $\Rightarrow \lambda=\mu=\frac{2}{3}$
ie the centre of mass lies two-thirds of the way along any of the medians, from the relevant vertex.

