Q1

Show that if $|\underline{a}-\underline{b}|=|\underline{a}+\underline{b}|$, then $\underline{a} \& \underline{b}$ are perpendicular.

Q2

Show that the coordinates of the reflection of the point (a, b) in the line $y=m x$ are $\frac{1}{m^{2}+1}\binom{a\left(1-m^{2}\right)+2 b m}{2 a m+b\left(m^{2}-1\right)}$

Q3

Use vectors to prove that the mid-points of the sides of any quadrilateral form the vertices of a parallelogram.

Q4

Prove that the centre of mass of a triangular lamina lies $2 / 3$ of the way along any of the medians.

Q5

Given that the centre of mass of a triangular lamina lies $2 / 3$ of the way along any of the medians, prove that it has position vector $\frac{1}{3}$ $(\underline{a}+\underline{b}+\underline{c})$.

Q6

In the diagram below, $O A B C$ is a square, M is the midpoint of $O A$, $B Q$ is a quarter of $B C$, and P is the intersection of $A C$ and $M Q$.

If $\underline{a}=\overrightarrow{O A}$ and $\underline{c}=\overrightarrow{O C}$, show that $\overrightarrow{O P}=\frac{3}{5} \underline{a}+\frac{2}{5} \underline{c}$

Q7

Find the angle between adjacent sloping faces of a right squarebased pyramid, where the faces are equilateral triangles (as shown in Figure 1).

Figure 1

Q8

Given that $\boldsymbol{a}, \boldsymbol{b} \& \boldsymbol{c}$ are linearly independent vectors, establish whether the vectors $\boldsymbol{a}+\boldsymbol{b}, \boldsymbol{a}-\boldsymbol{c} \& \boldsymbol{a}+\boldsymbol{b}+\boldsymbol{c}$ are linearly independent.

Q9
Are the vectors $\left(\begin{array}{l}1 \\ 0 \\ 0\end{array}\right) \&\left(\begin{array}{l}0 \\ 0 \\ 0\end{array}\right)$ linearly independent?

