STEP/Trigonometry Q3 (30/6/23)

Solve $\sin \theta=\cos 4 \theta$ for $0<\theta<\pi$

Solution

$\sin \theta=\sin \left(\frac{\pi}{2}-4 \theta\right)$
Hence $\theta=\frac{\pi}{2}-4 \theta+2 n \pi(1)$ or $\theta=\left(\pi-\left[\frac{\pi}{2}-4 \theta\right]\right)+2 n \pi$
From (1), $5 \theta=\frac{\pi(1+4 n)}{2}$, so that $\theta=\frac{\pi(1+4 n)}{10}$
giving $\theta=\frac{\pi}{10}, \frac{\pi}{2}$ or $\frac{9 \pi}{10}$
From (2), $-3 \theta=\frac{\pi(1+4 n)}{2}$, so that $\theta=\frac{-\pi(1+4 n)}{6}$
giving $\theta=\frac{\pi}{2}$ again
Thus, the solutions are $\theta=\frac{\pi}{10}, \frac{\pi}{2}$ or $\frac{9 \pi}{10}$
A sketch confirms that these are plausible.

