STEP/Trigonometry Q3 (30/6/23)

Solve $sin\theta = cos4\theta$ for $0 < \theta < \pi$

Solution

 $\sin\theta = \sin\left(\frac{\pi}{2} - 4\theta\right)$ Hence $\theta = \frac{\pi}{2} - 4\theta + 2n\pi (1)$ or $\theta = \left(\pi - \left[\frac{\pi}{2} - 4\theta\right]\right) + 2n\pi (2)$ From (1), $5\theta = \frac{\pi(1+4n)}{2}$, so that $\theta = \frac{\pi(1+4n)}{10}$ giving $\theta = \frac{\pi}{10}$, $\frac{\pi}{2}$ or $\frac{9\pi}{10}$ From (2), $-3\theta = \frac{\pi(1+4n)}{2}$, so that $\theta = \frac{-\pi(1+4n)}{6}$ giving $\theta = \frac{\pi}{2}$ again Thus, the solutions are $\theta = \frac{\pi}{10}$, $\frac{\pi}{2}$ or $\frac{9\pi}{10}$

A sketch confirms that these are plausible.

