STEP/Trigonometry Q1 (30/6/23)

How many solutions does the equation

$$
\sin (2 \cos (2 x)+2)=0 \text { have, for } 0 \leq x \leq 2 \pi ?
$$

Solution

With $u=2 \cos (2 x)+2,0 \leq x \leq 2 \pi \Rightarrow 2(-1)+2 \leq u \leq 2(1)+2$ ie $0 \leq u \leq 4$

Then $\sin u=0 \Rightarrow u=0$ or π
$\Rightarrow \cos (2 x)=-1$ or $\frac{\pi-2}{2}=\frac{\pi}{2}-1$
Now making the substitution $w=2 x, 0 \leq w \leq 4 \pi$
Referring to the graph of cosw,
$\cos w=-1$ has 2 solutions (for w), and $\cos w=\frac{\pi}{2}-1$ has 4
solutions; making 6 solutions in total.
As $x=\frac{w}{2}$, there are also 6 solutions for x.
[A variation on the above approach is to say that $2 \cos (2 x)+2$ must equal $n \pi$, for suitable integer n

Then, either $n=0$, with $\cos (2 x)=-1$,
or $n=1$, with $\cos (2 x)=\frac{\pi}{2}-1$
(no other values of n are consistent with $2 \cos (2 x)+2$),
as before.]

