STEP/Transformations Q5 (28/6/23)

What happens to the graph of $y=f(x)$ when it is transformed to: (a) $y=f(|x|)$ (b) $|y|=f(x)$

Solution
(a) When $x \geq 0, f(|x|)=f(x)$; when $x<0, f(|x|)=f(-x)$; ie that part of $y=f(x)$ to the right of the y-axis is reflected in the y-axis.

So $y=f(|x|)$ is the right half of $y=f(x)$, together with its reflection in the y-axis.
(b) First of all, $|y|=f(x)$ is only defined for x such that $f(x) \geq 0$.

The graph of $|y|=f(x)$ is similar to that of $y^{2}=f(x)$, or $y= \pm \sqrt{f(x)}$, in that it has two branches: $y=f(x)$ and $y=-f(x)$.

So, provided $f(x) \geq 0,|y|=f(x)$ is the same as $y=f(x)$, with the addition of its reflection in the x-axis.

