STEP/Sequences & Series Q5 (27/6/23)

(i) Consider the sequence defined by $u_n=au_{n-1}+b$, where $a\ \&\ b$ are real constants, and u_0 is given. What familiar sequences are special cases of this sequence?

Setting a = 1 gives an arithmetic sequence.

Setting b = 0 gives a geometric sequence.

(ii) Define a new sequence by $v_n = u_n + c$

For what value of c, in terms of a & b, will v_n be a geometric sequence? For what value of a does this not work?

$$v_{n-1} = u_{n-1} + c$$
 , and hence

$$u_n = au_{n-1} + b \Rightarrow v_n - c = a(v_{n-1} - c) + b$$

$$\Rightarrow v_n = av_{n-1} + b + c(1-a)$$

For v_n to be a geometric sequence, we want b + c(1 - a) = 0,

so that
$$c = \frac{-b}{1-a} = \frac{b}{a-1}$$
, provided that $a \neq 1$

When a=1, u_n , and hence v_n also, are arithmetic sequences.

(iii) If $u_n = 2u_{n-1} + 3$, and $u_0 = 4$, find a formula for u_n in terms of n

From (ii),
$$c = \frac{3}{2-1} = 3$$
 and $v_n = 2v_{n-1}$

Then
$$v_n = v_0(2^n)$$

and
$$v_n = u_n + 3$$
, so that $u_n + 3 = (u_0 + 3)(2^n)$

and
$$: u_n = 7(2^n) - 3$$

(and this can be checked by comparing with $u_n=2u_{n-1}+3$, and $u_0=4$)

(iv) Find a similar formula for $u_n = au_{n-1} + b$, where u_0 is given.

From (ii),
$$c = \frac{b}{a-1}$$
 and $v_n = av_{n-1}$

Then
$$v_n = v_0(a^n)$$

and
$$v_n = u_n + c$$
, so that $u_n + c = (u_0 + c)(a^n)$

and
$$u_n = (u_0 + c)(a^n) - c = \left(u_0 + \frac{b}{a-1}\right)(a^n) - \frac{b}{a-1}$$

(v) Under what conditions will u_n be constant? Give a non-trivial example.

Either
$$a = 1 \& b = 0$$

Or
$$a = 0$$
 and $u_0 = b$

Or
$$u_0 + \frac{b}{a-1} = 0$$
; ie $u_0 = \frac{b}{1-a}$

For example,
$$u_n = 2u_{n-1} - 1$$
, where $u_0 = 1$