STEP/Sequences \& Series Q3 (27/6/23)

Show that $\sum_{r=0}^{n}\binom{n}{r}=2^{n}$

Solution

Method 1: Consider the Binomial expansion of $(1+1)^{n}$

Method 2: Pascal's triangle:
1
11
121
1331
14641
Result to prove: the sum of each row is twice the sum of the previous one, so that the sum of each row is a power of $2 .\left({ }^{*}\right)$ Initial result to prove: $\binom{n}{r}=\binom{n-1}{r-1}+\binom{n-1}{r}$

Proof

If r items are to be chosen from n items, then either the 1st item is included or it isn't.

If it is included, then there are $\binom{n-1}{r-1}$ ways of choosing the remaining $r-1$ items that are required.

If it isn't included, then there are $\binom{n-1}{r}$ ways of choosing the remaining r items that are required.

This gives a total of $\binom{n-1}{r-1}+\binom{n-1}{r}$ ways of choosing the r items.

This result shows that each entry, apart from the 1 s at each end, is the sum of the two entries above (to the left and right), and hence each entry in row $n-1$, apart from the 1 s on each side, contributes to two entries in row n. The 1 s in row $n-1$ each contribute to only one entry in row n, but the 1 s at each end of row n make up the shortfall, so that each entry in row $n-1$ is represented twice in the sum for row n. This proves result (*), and hence that $\sum_{r=0}^{n}\binom{n}{r}=2^{n}$.

Method 3: Counting ways of selecting any number of items (ie 0 , $1,2, \ldots$ or n)

1st counting method: $\sum_{r=0}^{n}\binom{n}{r}$
2nd counting method: For each object, there are 2 choices: include or exclude; giving 2^{n} possibilities

Method 4: Induction
If true for $n=k$, so that $\sum_{r=0}^{k}\binom{k}{r}=2^{k}$,

$$
\begin{aligned}
& \text { then } \sum_{r=0}^{k+1}\binom{k+1}{r}=\binom{k+1}{0}+\left\{\sum_{r=1}^{k}\binom{k+1}{r}\right\}+\binom{k+1}{k+1} \\
& =1+\sum_{r=1}^{k}\left\{\binom{k}{r-1}+\binom{k}{r}\right\}+1 \\
& =1+\left\{\sum_{r-1=0}^{k-1}\binom{k}{r-1}\right\}+\left[\left\{\sum_{r=0}^{k}\binom{k}{r}\right\}-\binom{k}{0}\right]+1 \\
& =1+\left\{\sum_{R=0}^{k-1}\binom{k}{R}\right\}+\left[2^{k}-1\right]+1
\end{aligned}
$$

$$
\begin{aligned}
& =1+\left\{\sum_{R=0}^{k}\binom{k}{R}\right\}-\binom{k}{k}+2^{k} \\
& =1+2^{k}-1+2^{k}=2^{k+1}
\end{aligned}
$$

