STEP/Sequences \& Series Q2 (27/6/23)

'Perfect powers' can be defined as follows:
m^{k} for integer $m \geq 2 \&$ integer $k \geq 2$
Prove that the sum of the reciprocals of all perfect powers is 1 (including duplicates; eg $4^{2}=2^{4}$).

Solution

$$
\begin{aligned}
& \sum_{m=2}^{\infty} \sum_{k=2}^{\infty} \frac{1}{m^{k}}=\sum_{m=2}^{\infty} \frac{\frac{1}{m^{2}}}{1-\frac{1}{m}}=\sum_{m=2}^{\infty} \frac{1}{m(m-1)}=\sum_{m=2}^{\infty}\left(\frac{1}{m-1}-\frac{1}{m}\right) \\
& =\left(\frac{1}{1}+\frac{1}{2}+\frac{1}{3}+\cdots\right)-\left(\frac{1}{2}+\frac{1}{3}+\cdots\right)=1
\end{aligned}
$$

