STEP/Sequences \& Series: Exercises - Overview
 (27/6/23)

Q1

Triangular numbers are defined as follows:
$T_{r}=\frac{1}{2} r(r+1)$ for integer $r \geq 1$
Prove that $\sum_{r=1}^{\infty} \frac{1}{T_{r}}=2$

Q2

'Perfect powers' can be defined as follows:
m^{k} for integer $m \geq 2$ \& integer $k \geq 2$
Prove that the sum of the reciprocals of all perfect powers is 1 (including duplicates; eg $4^{2}=2^{4}$).

Q3
Show that $\sum_{r=0}^{n}\binom{n}{r}=2^{n}$

Q4

Show that $\sum_{r=1}^{\infty} r a^{r}=\frac{a}{(1-a)^{2}}$

Q5

(i) Consider the sequence defined by $u_{n}=a u_{n-1}+b$, where $a \& b$ are real constants, and u_{0} is given.

What familiar sequences are special cases of this sequence?
(ii) Define a new sequence by $v_{n}=u_{n}+c$

For what value of c, in terms of $a \& b$, will v_{n} be a geometric sequence? For what value of a does this not work?
(iii) If $u_{n}=2 u_{n-1}+3$, and $u_{0}=4$, find a formula for u_{n} in terms of n
(iv) Find a similar formula for $u_{n}=a u_{n-1}+b$, where u_{0} is given.
(v) Under what conditions will u_{n} be constant? Give a non-trivial example.

