If and Only If Proofs (STEP) (6 pages; 18/5/23)

(1) General Example: (Given two statements A & B) Prove that $A \Leftrightarrow B$

Possible approaches:

(i) Prove that $A \Leftrightarrow C \Leftrightarrow D \dots \Leftrightarrow B$

(ii) Prove that $A \Rightarrow B$ and $B \Rightarrow A$

(iii) Prove that $A \Rightarrow B$ and $A' \Rightarrow B'$ (this is equivalent to $B \Rightarrow A$)

(iv) Break down into cases; eg C_1 : x < 0, C_2 : $x = 0 \& C_3$: x > 0

(especially where *B* is a composite statement, such as "*C* and either *D* or *E*")

Then, for each case C_i , prove either that A is true and B is true, or that A is false and B is false.

Notes

(a) For each case, we can investigate whether *A* (or *B*) turns out to be true or false, and then show that *B* (or *A*) follows suit.

(b) In some situations, it is possible to enumerate all possible situations, but it is obviously desirable to keep the number of cases to a minimum.

(c) If *B* (say) is a composite statement, then it may be advantageous to base the classification into cases on this statement (eg *B* may involve "x > 0", and this may suggest the cases $C_1: x < 0, C_2: x = 0 \& C_3: x > 0$)

(d) It may not be possible to arrange the cases so that *A* is always true, or always false. Instead we may have to be satisfied with having narrowed things down so that, for a particular case (eg

fmng.uk

with the knowledge that x > 0), we still need to show that $A \Leftrightarrow B$ (whilst for other cases, we need only show that $C_i \Rightarrow A$ and

 $C_i \Rightarrow B$).

(e) When we show that $C_i \Rightarrow A$ and $C_i \Rightarrow B$, we are effectively doing the following:

 $A \& C_i \Rightarrow C_i \Rightarrow B \Rightarrow B \& C_i \text{ or } A' \& C_i \Rightarrow C_i \Rightarrow B' \Rightarrow B' \& C_i$ and $B \& C_i \Rightarrow C_i \Rightarrow A \Rightarrow A \& C_i \text{ or } B' \& C_i \Rightarrow C_i \Rightarrow A' \Rightarrow A' \& C_i$ ie we are showing, case by case, that $A \Rightarrow B$ and $B \Rightarrow A$.

(2) Example: Given that \underline{a} , $\underline{b} \& \underline{c}$ are non-zero position vectors, and that the angles between $\underline{a} \& \underline{c}$ and $\underline{b} \& \underline{c}$ are $\alpha \& \beta$ respectively, prove that \underline{c} bisects the angle between $\underline{a} \& \underline{b}$ if and only if $\alpha = \beta$ and either $\underline{a} \neq k \underline{b}$ or $\alpha = 0$

Solution

Note that $0 \le \alpha, \beta \le \frac{\pi}{2}$.

Let S be the event " \underline{c} bisects the angle between $\underline{a} \& \underline{b}$ ".

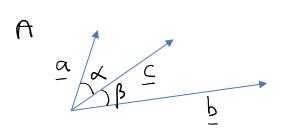
Let T_1 be the event " $\alpha = \beta$ ".

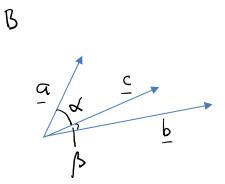
Let T_2 be the event " $\underline{a} \neq k \underline{b}$ "

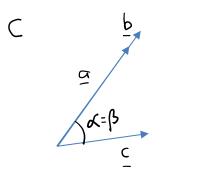
Let T_3 be the event " $\alpha = 0$ "

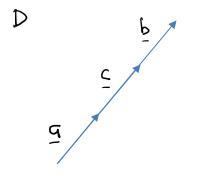
Let T be the event T_1 and either T_2 or T_3 .

One of the following 4 possible types of situation must occur:









[These have been chosen so that, in each case, either S will always occur, or S will never occur.]

We then need to show that, in each case, where S occurs, T occurs as well; and where S doesn't occur, T doesn't occur either. (*)

For A, S occurs. Also, T_1 and T_2 occur, and so T occurs.

For B, S doesn't occur. Also, T_1 doesn't occur, and so T doesn't occur.

For C, S doesn't occur. Also, T_1 occurs, but neither T_2 nor T_3 occurs, and so T doesn't occur.

For D, S occurs. Also, T_1 occurs, and although T_2 doesn't occur, T_3 does occur, and so T occurs.

So we have shown (*).

[Note that, with this approach, once we have chosen the classification of the events (ie into 4 cases here), we just need to show in each case C either:

that $C \Rightarrow S$ and $C \Rightarrow T$, or that $C \Rightarrow S'$ and $C \Rightarrow T'$]

fmng.uk

(3) Example: Prove that $\frac{1}{a} > \frac{1}{b}$ if and only if a < b < 0 or

0 < a < b or a > 0 & b < 0

[This is easily seen from the graph of $y = \frac{1}{x}$.]

Solution

Note: Clearly the problem is undefined for a = 0 or b = 0.

Denote $\frac{1}{a} > \frac{1}{b}$ by *S*; a < b < 0 by T_1 ; 0 < a < b by T_2 ; a > 0 & b < 0 by T_3 , and " T_1 or T_2 or T_3 " by *T*.

[In theory, we could consider the 8 cases arising from the classification: a < or > 0, b < or > 0, a < or > b, but this could be time-consuming.]

Consider the following cases:

$$C_{1}: a > 0, b > 0$$

$$C_{2}: a < 0, b < 0$$

$$C_{3}: a > 0, b < 0$$

$$C_{4}: a < 0, b > 0$$
Case C_{1}

$$S: \frac{1}{a} > \frac{1}{b} \Rightarrow b > a (as a > 0, b > 0) \Rightarrow T_{2} \Rightarrow T$$
and $T \Rightarrow T_{2} (as a > 0, b > 0) \Rightarrow b > a \Rightarrow \frac{1}{a} > \frac{1}{b} (as a > 0, b > 0)$
So, for case $C_{1}, S \Leftrightarrow T$.
Case C_{2}

$$S: \frac{1}{a} > \frac{1}{b} \Rightarrow b > a \text{ (as } a < 0, b < 0) \Rightarrow T_1 \Rightarrow T$$

and $T \Rightarrow T_1 \text{ (as } a < 0, b < 0) \Rightarrow b > a \Rightarrow \frac{1}{a} > \frac{1}{b} \text{ (as } a < 0, b < 0)$

So, for case C_2 , $S \Leftrightarrow T$.

Case C₃

$$S:\frac{1}{a} > \frac{1}{b}$$
 is always true (as $a > 0, b < 0$)

and T_3 is always true

So, for case C_3 , both S & T will be true.

Case **C**₄

 $S:\frac{1}{a} > \frac{1}{b}$ is never true (as a < 0, b > 0)

and none of the T_i are true

So, for case C_4 , both S & T will be false.

So we have shown, in each case, that S & T follow suit, and therefore $S \Leftrightarrow T$.