If and Only If Proofs (STEP) (6 pages; 18/5/23)
(1) General Example: (Given two statements $A \& B$) Prove that $A \Leftrightarrow B$

Possible approaches:
(i) Prove that $A \Leftrightarrow C \Leftrightarrow D \ldots \Leftrightarrow B$
(ii) Prove that $A \Rightarrow B$ and $B \Rightarrow A$
(iii) Prove that $A \Rightarrow B$ and $A^{\prime} \Rightarrow B^{\prime}$ (this is equivalent to $B \Rightarrow A$)
(iv) Break down into cases; eg $C_{1}: x<0, C_{2}: x=0 \& C_{3}: x>0$ (especially where B is a composite statement, such as " C and either D or $E^{\prime \prime}$)

Then, for each case C_{i}, prove either that A is true and B is true, or that A is false and B is false.

Notes

(a) For each case, we can investigate whether A (or B) turns out to be true or false, and then show that B (or A) follows suit.
(b) In some situations, it is possible to enumerate all possible situations, but it is obviously desirable to keep the number of cases to a minimum.
(c) If B (say) is a composite statement, then it may be advantageous to base the classification into cases on this statement (eg B may involve " $x>0$ ", and this may suggest the cases $C_{1}: x<0, C_{2}: x=0 \& C_{3}: x>0$)
(d) It may not be possible to arrange the cases so that A is always true, or always false. Instead we may have to be satisfied with having narrowed things down so that, for a particular case (eg
with the knowledge that $x>0$), we still need to show that $A \Leftrightarrow B$ (whilst for other cases, we need only show that $C_{i} \Rightarrow A$ and
$\left.C_{i} \Rightarrow B\right)$.
(e) When we show that $C_{i} \Rightarrow A$ and $C_{i} \Rightarrow B$, we are effectively doing the following:
$A \& C_{i} \Rightarrow C_{i} \Rightarrow B \Rightarrow B \& C_{i}$ or $A^{\prime} \& C_{i} \Rightarrow C_{i} \Rightarrow B^{\prime} \Rightarrow B^{\prime} \& C_{i}$
and $B \& C_{i} \Rightarrow C_{i} \Rightarrow A \Rightarrow A \& C_{i}$ or $B^{\prime} \& C_{i} \Rightarrow C_{i} \Rightarrow A^{\prime} \Rightarrow A^{\prime} \& C_{i}$ ie we are showing, case by case, that $A \Rightarrow B$ and $B \Rightarrow A$.
(2) Example: Given that $\underline{a}, \underline{b} \& \underline{c}$ are non-zero position vectors, and that the angles between $\underline{a} \& \underline{c}$ and $\underline{b} \& \underline{c}$ are $\alpha \& \beta$ respectively, prove that \underline{c} bisects the angle between $\underline{a} \& \underline{b}$ if and only if $\alpha=\beta$ and either $\underline{a} \neq k \underline{b}$ or $\alpha=0$

Solution

Note that $0 \leq \alpha, \beta \leq \frac{\pi}{2}$.
Let S be the event " \underline{c} bisects the angle between $\underline{a} \& \underline{b}$ ".
Let T_{1} be the event " $\alpha=\beta$ ".
Let T_{2} be the event " $\underline{a} \neq k \underline{b}$ "
Let T_{3} be the event " $\alpha=0$ "
Let T be the event T_{1} and either T_{2} or T_{3}.

One of the following 4 possible types of situation must occur:

B

D

[These have been chosen so that, in each case, either S will always occur, or S will never occur.]

We then need to show that, in each case, where S occurs, T occurs as well; and where S doesn't occur, T doesn't occur either. (*)

For A, S occurs. Also, T_{1} and T_{2} occur, and so T occurs.
For B, S doesn't occur. Also, T_{1} doesn't occur, and so T doesn't occur.

For C, S doesn't occur. Also, T_{1} occurs, but neither T_{2} nor T_{3} occurs, and so T doesn't occur.

For D, S occurs. Also, T_{1} occurs, and although T_{2} doesn't occur, T_{3} does occur, and so T occurs.

So we have shown (*).
[Note that, with this approach, once we have chosen the classification of the events (ie into 4 cases here), we just need to show in each case C either:
that $C \Rightarrow S$ and $C \Rightarrow T$, or that $C \Rightarrow S^{\prime}$ and $\left.C \Rightarrow T^{\prime}\right]$
(3) Example: Prove that $\frac{1}{a}>\frac{1}{b}$ if and only if $a<b<0$ or
$0<a<b$ or $a>0 \& b<0$
[This is easily seen from the graph of $y=\frac{1}{x}$.]

Solution

Note: Clearly the problem is undefined for $a=0$ or $b=0$.
Denote $\frac{1}{a}>\frac{1}{b}$ by $S ; a<b<0$ by $T_{1} ; 0<a<b$ by T_{2};
$a>0 \& b<0$ by T_{3}, and " T_{1} or T_{2} or T_{3} " by T.
[In theory, we could consider the 8 cases arising from the classification: $a<$ or $>0, b<$ or $>0, a<$ or $>b$, but this could be time-consuming.]

Consider the following cases:
$C_{1}: a>0, b>0$
$C_{2}: a<0, b<0$
$C_{3}: a>0, b<0$
$C_{4}: a<0, b>0$

Case C_{1}

$S: \frac{1}{a}>\frac{1}{b} \Rightarrow b>a($ as $a>0, b>0) \Rightarrow T_{2} \Rightarrow T$
and $T \Rightarrow T_{2}($ as $a>0, b>0) \Rightarrow b>a \Rightarrow \frac{1}{a}>\frac{1}{b}($ as $a>0, b>0)$
So, for case $C_{1}, S \Leftrightarrow T$.

Case \boldsymbol{C}_{2}

$S: \frac{1}{a}>\frac{1}{b} \Rightarrow b>a($ as $a<0, b<0) \Rightarrow T_{1} \Rightarrow T$
and $T \Rightarrow T_{1}($ as $a<0, b<0) \Rightarrow b>a \Rightarrow \frac{1}{a}>\frac{1}{b}($ as $a<0, b<0)$

So, for case $C_{2}, S \Leftrightarrow T$.

Case C_{3}

$S: \frac{1}{a}>\frac{1}{b}$ is always true (as $a>0, b<0$)
and T_{3} is always true
So, for case C_{3}, both $S \& T$ will be true.
Case $\boldsymbol{C}_{\mathbf{4}}$
$S: \frac{1}{a}>\frac{1}{b}$ is never true (as $a<0, b>0$)
and none of the T_{i} are true
So, for case C_{4}, both $S \& T$ will be false.

So we have shown, in each case, that $S \& T$ follow suit, and therefore $S \Leftrightarrow T$.

