STEP/Probability Q5 (12/6/23)

In a simplified game of tennis, a player wins a game by being the first player to win 4 points (ie $15,30,40$, Game). If the probability that player A wins each point is $\frac{2}{3}$, show that the probability that player A wins the game is $\frac{1808}{2187}$

Solution

Consider the possible cases for the general situation where the probability that player A wins each point is p.

Player B wins no points

Prob. A wins game $=p^{4}$

Player B wins 1 point

Possibilities: BAAAA, ABAAA, AABAA, AAABA
Prob. A wins game $=4 p^{4} q$, where $q=1-p$

Player B wins 2 points

Number of ways of selecting 3 As and $2 B s$ (followed by an A), where order is important (but the $A s$ are indistinguishable, as are the $B s)$ is $\frac{5!}{3!2!}=\frac{5(4)}{2}=10$

So Prob. A wins game $=10 p^{3} q^{2} p$

Player B wins 3 points

Number of ways of selecting $3 A s$ and $3 B s$ (followed by an A) is $\frac{6!}{3!3!}=\frac{6(5)(4)}{6}=20$

So Prob. A wins game $=20 p^{3} q^{3} p$

So the probability that player A wins the game is

$$
\begin{aligned}
& p^{4}+4 p^{4} q+10 p^{4} q^{2}+20 p^{4} q^{3} \\
& =p^{4}\left(1+4 q+10 q^{2}+20 q^{3}\right) \\
& =p^{4}\left(1+4-4 p+10(1-p)^{2}+20(1-p)^{3}\right) \\
& =p^{4}\left(35+p(-4-20-60)+p^{2}(10+60)-20 p^{3}\right)
\end{aligned}
$$

$=p^{4}\left(35-84 p+70 p^{2}-20 p^{3}\right)$
Checks
$p=0:$ Prob. $=0$, as expected
$p=1:$ Prob. $=(35-84+70-20)=1$, as expected
$p=\frac{1}{2}:$ Prob. $=\left(\frac{1}{2}\right)^{4}\left(35-42+\frac{35}{2}-\frac{5}{2}\right)=\frac{8}{16}=\frac{1}{2}$, as expected (by symmetry)

When $p=\frac{2}{3}$, Prob. $=\frac{16}{81}\left(35-\frac{168}{3}+\frac{280}{9}-\frac{160}{27}\right)$
$=\frac{16}{81(27)}(945-1512+840-160)=\frac{16(113)}{2187}=\frac{1808}{2187}$, as required.

