An unbiased die has n sides, numbered 1 to n. If the die is thrown twice, find the probability that the score on the $2^{\text {nd }}$ throw is greater than the score on the $1^{\text {st }}$ throw.

Solution
Let $S_{1} \& S_{2}$ be the two scores.

Method 1

$P\left(S_{2}>S_{1}\right)=\sum_{i=1}^{n} P\left(S_{1}=i\right) P\left(S_{2}>i\right)$
$=\frac{1}{n}\left(\frac{n-1}{n}+\frac{n-2}{n}+\cdots+\frac{1}{n}+0\right)$
$=\frac{1}{n^{2}} \cdot \frac{1}{2}(n-1) n=\frac{n-1}{2 n}$

Method 2

$P\left(S_{2}>S_{1}\right)+P\left(S_{2}<S_{1}\right)+P\left(S_{2}=S_{1}\right)=1$,
and $P\left(S_{2}>S_{1}\right)=P\left(S_{2}<S_{1}\right)$, by symmetry.
So $2 P\left(S_{2}>S_{1}\right)+P\left(S_{2}=S_{1}\right)=1$,
and hence $P\left(S_{2}>S_{1}\right)=\frac{1}{2}\left(1-P\left(S_{2}=S_{1}\right)\right)$
Now, $P\left(S_{2}=S_{1}\right)=\sum_{i=1}^{n}\left(\frac{1}{n}\right)^{2}=\frac{n}{n^{2}}=\frac{1}{n}$,
and so $P\left(S_{2}>S_{1}\right)=\frac{1}{2}\left(1-P\left(S_{2}=S_{1}\right)\right)=\frac{1}{2}\left(1-\frac{1}{n}\right)=\frac{n-1}{2 n}$

