## STEP/Probability Q2 (12/6/23)

The probability that a (biased) coin shows Heads is $p$, and the probability that it shows Tails is $q$.
(i) Show that $p q \leq \frac{1}{4}$
(ii) Show that $p^{3}+q^{3} \geq \frac{1}{4}$

Solution
(i) $p q \leq \frac{1}{4} \Leftrightarrow 4 p(1-p) \leq 1($ as $p+q=1)$
$\Leftrightarrow 4 p^{2}-4 p+1 \geq 0$
As LHS $=4\left(p-\frac{1}{2}\right)^{2}$, the result is proved.
(ii) $p^{3}+q^{3} \geq \frac{1}{4} \Leftrightarrow(p+q)^{3}-3 p^{2} q-3 p q^{2} \geq \frac{1}{4}$
$\Leftrightarrow 1-3 p q(p+q) \geq \frac{1}{4}$
$\Leftrightarrow \frac{3}{4} \geq 3 p q$
$\Leftrightarrow p q \leq \frac{1}{4}$, and this result was established in (i).

