STEP/Polynomials Q8 (26/6/23)

Let $f(x)=x^{n}+a_{n-1} x^{n-1}+\cdots+a_{2} x^{2}+a_{1} x+a_{0}$, where $n \geq 2$ and the a_{i} are integers, with $a_{0} \neq 0$.

Suppose that there is a rational root $\frac{p}{q}$, where $p \& q$ are integers with no common factor greater than 1 and $q>0$.

By considering $q^{n-1} f(x)$, show that the root will be an integer. [From STEP 2011, P3, Q2]

Solution
$\left(\frac{p}{q}\right)^{n}+a_{n-1}\left(\frac{p}{q}\right)^{n-1}+\cdots+a_{2}\left(\frac{p}{q}\right)^{2}+a_{1}\left(\frac{p}{q}\right)+a_{0}=0$
and, multiplying by q^{n-1} :
$\frac{p^{n}}{q}+a_{n-1} p^{n-1}+a_{n-2} p^{n-2} q+\cdots+a_{1} p q^{n-2}+a_{1} q^{n-1}=0$
Then, as all the terms from $a_{n-1} p^{n-1}$ onwards are integers, it follows that $\frac{p^{n}}{q}$ is also an integer, and hence $q=1$ (as $p \& q$ have no common factor greater than 1), and the root is an integer.

