STEP/Polynomials Q5 (26/6/23)

(i) Find an expansion for $(a+b+c)^{3}$, and give a justification for the coefficients.
(ii) Extend this to $(a+b+c)^{4}$

Solution

(i) By an ordinary expansion:
$(a+b+c)^{3}=([a+b]+c)^{3}$
$=(a+b)^{3}+3(a+b)^{2} c+3(a+b) c^{2}+c^{3}$
$=\left(a^{3}+3 a^{2} b+3 a b^{2}+b^{3}\right)+\left(3 a^{2} c+3 b^{2} c+6 a b c\right)$
$+\left(3 a c^{2}+3 b c^{2}\right)+c^{3}$
$=\left(a^{3}+b^{3}+c^{3}\right)+3\left(a^{2} b+a^{2} c+b^{2} a+b^{2} c+c^{2} a+c^{2} b\right)$
$+6 a b c$
Alternatively, this could have been deduced by noting that the terms fall into one of the 3 groups above.

Then there is only 1 way of creating an a^{3} term from
$(a+b+c)(a+b+c)(a+b+c)$; namely by choosing the a from each of the 3 brackets.

There are 3 ways of creating an $a^{2} b$ term: 3[number of ways of choosing the $b] \times 1$ [number of ways of choosing two a from the remaining 2 brackets].

Finally, there are 6 ways of creating an $a b c$ term: 3 [number of ways of choosing the a] $\times 2$ [number of ways of choosing the b from the remaining 2 brackets] $\times 1$ [number of ways of choosing the c from the remaining bracket].

The final expression then follows by symmetry.
(ii) $(a+b+c)^{4}=\left(a^{4}+b^{4}+c^{4}\right)$
$+4\left(a^{3} b+a^{3} c+b^{3} a+b^{3} c+c^{3} a+c^{3} b\right)$
$+6\left(a^{2} b^{2}+a^{2} c^{2}+b^{2} c^{2}\right)+12\left(a^{2} b c+b^{2} a c+c^{2} a b\right)$

For the $a^{2} b^{2}$ term etc, there are $\binom{4}{2}=6$ ways of choosing the brackets from $(a+b+c)(a+b+c)(a+b+c)(a+b+c)$ to give a^{2}, and then just 1 way of obtaining the b^{2} term.

For the $a^{2} b c$ term etc, there are $\binom{4}{2}=6$ ways of choosing the brackets for the a^{2} again, multiplied by the 2 ways of choosing brackets for the b and c.

For further investigation: the 'trinomial' expansion of $(a+b+c)^{n}$ can be shown to be $\sum_{\substack{i, j, k=\\(i+j+k=n)}}\binom{n}{i, j, k} a^{i} b^{j} c^{k}$,
where $\binom{n}{i, j, k}=\frac{n!}{i!j!k!}$
(with a further extension to the 'multinomial' expansion of $\left.\left(a_{1}+a_{2}+\cdots+a_{m}\right)^{n}\right)$

