Q1

Factorise $2 x^{3}-33 x^{2}-6 x+11$

Q2

Factorise (a) $x^{3}-y^{3}$ (b) $x^{3}+y^{3}$

Q3
Factorise $6 x^{4}-7 x^{3}-26 x^{2}+7 x+20$

Q4

What is the minimum value of $\left(x^{2}-4 x+3\right)\left(x^{2}+4 x+3\right)$, where x can be any real number? (without using Calculus)

Q5

(i) Find an expansion for $(a+b+c)^{3}$, and give a justification for the coefficients.
(ii) Extend this to $(a+b+c)^{4}$

Q6

How many solutions are there to $x^{3}-6 x^{2}+9 x+2=0$?

Q7

Write out the possible factorisations of $x^{n}-y^{n}$ and $x^{n}+y^{n}$

Q8

Let $f(x)=x^{n}+a_{n-1} x^{n-1}+\cdots+a_{2} x^{2}+a_{1} x+a_{0}$,
where $n \geq 2$ and the a_{i} are integers, with $a_{0} \neq 0$.
Suppose that there is a rational root $\frac{p}{q}$, where $p \& q$ are integers with no common factor greater than 1 and $q>0$.

By considering $q^{n-1} f(x)$, show that the root will be an integer. [From STEP 2011, P3, Q2]

