STEP/Logarithms Q3 (24/6/23)

(i) Use the graphs of $y=\ln x$ and $y=m x$ (for a suitable m) to show that if $e^{a}=a^{e}$, then $a=e$.
(ii) Show that, if $a^{b}=b^{a}$, where $a \& b$ are distinct, then $a<e<b$.

Solution
(i) [Note that if $2^{a}=a^{2}$, it doesn't follow that $a=2$ (as a can equal 4).]
$e^{a}=a^{e} \Rightarrow a=e \ln a$ and so $\frac{a}{e}=\ln a$
Consider the intersection of the graphs $y=\ln x$ and $y=\frac{1}{e} x$.

In order for there to be a single solution $(x=a), y=\frac{1}{e} x$ must touch $y=\ln x$ when $x=a$.

Thus $y=\frac{1}{e} x$ is a tangent to $y=\ln x$ at $x=a$, and so $\frac{d}{d x}(\ln x)=\frac{1}{e}$ when $x=a$
$\Rightarrow \frac{1}{a}=\frac{1}{e}$ and so $a=e$, as required.
(ii) $a^{b}=b^{a} \Rightarrow b \ln a=a \ln b \Rightarrow \frac{\ln a}{a}=\frac{\ln b}{b}=m$, say

Consider the intersection of the graphs $y=\ln x$ and $y=m x$.

These occur when $\ln x=m x$; ie when $\frac{\ln x}{x}=m$, and so there are points of intersection when $x=a \& x=b$.

From (i), the tangent to $y=\ln x$ (of the form $y=m x$) occurs when $x=e$, and so $a<e<b$.

