STEP/Logarithms Q3 (24/6/23)

(i) Use the graphs of y = lnx and y = mx (for a suitable *m*) to show that if $e^a = a^e$, then a = e.

(ii) Show that, if $a^b = b^a$, where a & b are distinct, then

a < e < b.

Solution

(i) [Note that if $2^a = a^2$, it doesn't follow that a = 2 (as a can equal 4).]

 $e^a = a^e \Rightarrow a = elna$ and so $\frac{a}{e} = lna$

Consider the intersection of the graphs y = lnx and $y = \frac{1}{e}x$.

In order for there to be a single solution (x = a), $y = \frac{1}{e}x$ must touch y = lnx when x = a.

Thus $y = \frac{1}{e}x$ is a tangent to y = lnx at x = a, and so $\frac{d}{dx}(lnx) = \frac{1}{e}$ when x = a $\Rightarrow \frac{1}{a} = \frac{1}{e}$ and so a = e, as required.

(ii)
$$a^b = b^a \Rightarrow blna = alnb \Rightarrow \frac{lna}{a} = \frac{lnb}{b} = m$$
, say

Consider the intersection of the graphs y = lnx and y = mx.

These occur when lnx = mx; ie when $\frac{lnx}{x} = m$,

and so there are points of intersection when x = a & x = b.

From (i), the tangent to y = lnx (of the form y = mx) occurs when x = e, and so a < e < b.