STEP/Logarithms Q2 (24/6/23)

Show that $1 - \frac{1}{x} \le lnx \le x - 1$, for x > 0

Solution

1st part

 $\frac{d}{dx}(lnx) = \frac{1}{r}$ and $\frac{d}{dx}\left(1 - \frac{1}{r}\right) = \frac{1}{r^2}$ For 0 < x < 1, $\frac{1}{x} < \frac{1}{x^2}$; ie $1 - \frac{1}{x}$ is increasing faster than lnxFor x > 1, $\frac{1}{x} > \frac{1}{x^2}$; ie *lnx* is increasing faster than $1 - \frac{1}{x}$ [as can be seen from a sketch of the two curves] When x = 1, lnx = 0 and $1 - \frac{1}{x} = 0$. Thus, for 0 < x < 1, $1 - \frac{1}{x}$ is catching up with *lnx*, and for x > 1, *lnx* moves away from $1 - \frac{1}{x}$, and hence $lnx \ge 1 - \frac{1}{x}$ for x > 0. 2nd part $lnx \le x - 1 \Leftrightarrow x \le e^{x - 1} \Leftrightarrow y + 1 \le e^{y}$ (1), where y = x - 1(1) is true for y = 0Now, $\frac{d}{dy}(e^y) = e^y$ and $\frac{d}{dy}(y+1) = 1$, so that $\frac{d}{dy}(e^y) \ge \frac{d}{dy}(y+1)$ for $y \ge 0$ So (1) is true for $y \ge 0$

Now
$$y + 1 = e^{y}$$
 for $y = 0$,
and $\frac{d}{dy}(y + 1) > \frac{d}{dy}(e^{y})$ for $y < 0$,
so that $y + 1 < e^{y}$ for $y < 0$;
ie (1) is true for $y < 0$ as well (though $x > 0 \Rightarrow y > -1$).

Hence
$$lnx \le x - 1$$
 when $x > 0$
So $1 - \frac{1}{x} \le lnx \le x - 1$, for $x > 0$