Show that $1-\frac{1}{x} \leq \ln x \leq x-1$, for $x>0$

Solution

1st part

$\frac{d}{d x}(\ln x)=\frac{1}{x}$ and $\frac{d}{d x}\left(1-\frac{1}{x}\right)=\frac{1}{x^{2}}$
For $0<x<1, \frac{1}{x}<\frac{1}{x^{2}}$; ie $1-\frac{1}{x}$ is increasing faster than $\ln x$
For $x>1, \frac{1}{x}>\frac{1}{x^{2}} ;$ ie $\ln x$ is increasing faster than $1-\frac{1}{x}$
[as can be seen from a sketch of the two curves]
When $x=1, \ln x=0$ and $1-\frac{1}{x}=0$.
Thus, for $0<x<1,1-\frac{1}{x}$ is catching up with $\ln x$, and for $x>1$, $\ln x$ moves away from $1-\frac{1}{x}$, and hence $\ln x \geq 1-\frac{1}{x}$ for $x>0$.
$2^{\text {nd }}$ part
$\ln x \leq x-1 \Leftrightarrow x \leq e^{x-1} \Leftrightarrow y+1 \leq e^{y}(1)$, where $y=x-1$
(1) is true for $y=0$

Now, $\frac{d}{d y}\left(e^{y}\right)=e^{y}$ and $\frac{d}{d y}(y+1)=1$,
so that $\frac{d}{d y}\left(e^{y}\right) \geq \frac{d}{d y}(y+1)$ for $y \geq 0$
So (1) is true for $y \geq 0$

Now $y+1=e^{y}$ for $y=0$,
and $\frac{d}{d y}(y+1)>\frac{d}{d y}\left(e^{y}\right)$ for $y<0$,
so that $y+1<e^{y}$ for $y<0$;
ie (1) is true for $y<0$ as well (though $x>0 \Rightarrow y>-1$).

Hence $\ln x \leq x-1$ when $x>0$
So $1-\frac{1}{x} \leq \ln x \leq x-1$, for $x>0$

