(i) Show that $\log _{2} 3>\frac{3}{2}$
(ii) Find an upper bound for $\log _{2} 3$ (as small as possible)

Solution

(i) $\log _{2} 3>\frac{3}{2} \Leftrightarrow 3>2^{\frac{3}{2}}$ (as $y=2^{x}$ is an increasing function)
$\Leftrightarrow 3^{2}>2^{3}$
(ii) Suppose that $\log _{2} 3<\frac{m}{n}$

Then $3<2^{\left(\frac{m}{n}\right)}$ and $3^{n}<2^{m}$
As $243=3^{5}<2^{8}=256, \log _{2} 3<\frac{8}{5}$
[and $\frac{8}{5}$ is a reasonably low upper bound, as $243 \& 256$ are reasonably close]

