Q1

(i) Show that $\log _{2} 3>\frac{3}{2}$
(ii) Find an upper bound for $\log _{2} 3$ (as small as possible)

Q2

Show that $1-\frac{1}{x} \leq \ln x \leq x-1$, for $x>0$

Q3

(i) Use the graphs of $y=\ln x$ and $y=m x$ (for a suitable m) to show that if $e^{a}=a^{e}$, then $a=e$.
(ii) Show that, if $a^{b}=b^{a}$, where $a \& b$ are distinct, then $a<e<b$.

Q4

By approximating the graph of
$y=\log _{2} x$ by a straight line between $x=2$ and $x=4$, find an approximate value for $\log _{2}\left(\frac{5}{2}\right)$

