STEP/Integration Q9 (21/6/23)

$\int \frac{1}{1+\cos x} d x$

Solution

$$
\begin{aligned}
& \int \frac{1}{1+\cos x} d x=\int \frac{1-\cos x}{1-\cos ^{2} x} d x=\int \frac{1-\cos x}{\sin ^{2} x} d x \\
& =\int \operatorname{cosec}^{2} x d x-\int \frac{\cos x}{\sin ^{2} x} d x
\end{aligned}
$$

Now, as $\frac{d}{d x} \tan x=\sec ^{2} x$, we can expect $\frac{d}{d x} \cot x=a \cdot \operatorname{cosec}^{2} x$, where $a=1$ or -1 .

To investigate this, $\frac{d}{d x}(\tan x)^{-1}=-(\tan x)^{-2} \sec ^{2} x=-\operatorname{cosec}^{2} x$
For the $2^{\text {nd }}$ integral, as the integral of the numerator $\cos x$ features simply in the rest of the integrand (ie $\frac{1}{\sin ^{2} x}$ can be written as $\frac{1}{u^{2}}$, where $u=\sin x$, and $\frac{1}{u^{2}}$ can easily be integrated), $u=\sin x$ leads to $\int \frac{\cos x}{\sin ^{2} x} d x=-\frac{1}{\sin x}=-\operatorname{cosec} x$

So $\int \frac{1}{1+\cos x} d x=-\cot x+\operatorname{cosec} x+c$

