STEP/Integration Q10 (21/6/23)

$$
\int \frac{1}{x \ln x} d x
$$

Solution
We could try to do this by Parts:
Differentiating $\frac{1}{\ln x}$:
$\int \frac{1}{x \ln x} d x=\ln x \cdot \frac{1}{\ln x}-\int \ln x .(-1)(\ln x)^{-2}\left(\frac{1}{x}\right) d x$
$=1+\int \frac{1}{x \ln x} d x$?!
[The apparent contradiction here is explained by the constant of integration.]

Instead: $\int \frac{1}{x \ln x} d x=\int \frac{\left(\frac{1}{x}\right)}{\ln x} d x$, and $\int \frac{1}{x} d x=\ln x$,
so let $u=\ln x ; d u=\frac{1}{x} d x$,
and $\int \frac{1}{x \ln x} d x=\int \frac{1}{u} d u=\ln (\ln x)+c$

