## STEP/Integers Q8 (19/2/24)

Let $f(n)$ be the number of factors, other than 1 , of the number $n$.
Show that, if $m \& n$ have no common factors,
then $f(m n)=f(m) f(n)+f(m)+f(n)$

Solution
Consider $m=25 \& n=4$. All factors of 100 are either factors of 25 , factors of 4 , or a product of a factor of 25 and a factor of 4 . Thus the factors of 100 (excluding 1) are formed by combining one number from the set $\{1,5,25\}$ and one from the set $\{1,2,4\}$, and then discarding the number 1.
[In particular, the factors of 25 are obtained by selecting the 1 from the $2^{\text {nd }}$ set.]

This can be generalised to:
$f(m n)=(f(m)+1)(f(n)+1)-1$
$f(m) f(n)+f(m)+f(n)$, as required.

