STEP/Integers Q7 (19/11/23)

Let $h(a, b)$ denote the highest common factor of $a \& b$. Suppose that $b=k a+r$, where $k, a \& r$ are positive integers.

Prove that $h(a, b)=h(a, r)$.

Solution

We shall aim to prove that $h(a, b)$ is a divisor of $h(a, r)$, and also that $h(a, r)$ is a divisor of $h(a, b)$.

$1^{\text {st }}$ Part

$h(a, b)$ is a divisor of $b=k a+r$,
so that $k a+r=h(a, b)\left[k \frac{a}{h(a, b)}+\frac{r}{h(a, b)}\right]$,
where $\frac{a}{h(a, b)} \in \mathbb{Z}^{+}$, and hence $\frac{r}{h(a, b)} \in \mathbb{Z}^{+}$also
(as $k \frac{a}{h(a, b)}+\frac{r}{h(a, b)} \in \mathbb{Z}^{+}$.
So $h(a, b)$ is a divisor of both a and r; ie a common factor of a and r. And hence $h(a, b)$ is a divisor of $h(a, r)$.

2nd Part

$h(a, r)$ is a divisor of any linear combination of $a \& r$; in particular $k a+r$

So $h(a, r)$ is a common factor of a and $b=k a+r$. And hence $h(a, r)$ is a divisor of $h(a, b)$.

As $h(a, b)$ is a divisor of $h(a, r)$, and $h(a, r)$ is a divisor of $h(a, b)$, it follows that $h(a, b)=h(a, r)$.

