STEP/Integers Q6 (21/6/23)

Show that numbers of the form $4(n-1)^{2}+2$ can never be one more than a multiple of 3 , where n is a positive integer.

Solution
Case 1: $n=3 p\left(\right.$ where $p \in \mathbb{Z}^{+}$or 0$)$
$4(n-1)^{2}+2=4(3 p-1)^{2}+2 \equiv 4(1)+2(\bmod 3) \equiv 0$
[as $4(3 p)^{2}+4(2)(3 p)(-1)$ is a multiple of 3]
Case 2: $n=3 p+1$
$4(n-1)^{2}+2=4(3 p)^{2}+2 \equiv 2$
Case 3: $n=3 p+2$
$4(n-1)^{2}+2=4(3 p+1)^{2}+2 \equiv 4+2 \equiv 0$

So $4(n-1)^{2}+2$ is always $\equiv 0$ or 2 ; ie never one more than a multiple of 3 .

