STEP/Integers Q6 (21/6/23)

Show that numbers of the form $4(n-1)^2 + 2$ can never be one more than a multiple of 3, where *n* is a positive integer.

Solution

Case 1:
$$n = 3p$$
 (where $p \in \mathbb{Z}^+$ or 0)
 $4(n-1)^2 + 2 = 4(3p-1)^2 + 2 \equiv 4(1) + 2 \pmod{3} \equiv 0$
[as $4(3p)^2 + 4(2)(3p)(-1)$ is a multiple of 3]
Case 2: $n = 3p + 1$
 $4(n-1)^2 + 2 = 4(3p)^2 + 2 \equiv 2$
Case 3: $n = 3p + 2$
 $4(n-1)^2 + 2 = 4(3p+1)^2 + 2 \equiv 4 + 2 \equiv 0$

So $4(n-1)^2 + 2$ is always $\equiv 0$ or 2; ie never one more than a multiple of 3.