STEP/Integers Q5 (21/6/23)

Show that the product of 4 consecutive positive integers is never a perfect square.

Solution

First of all, (1)(2)(3)(4) $=24$
$(2)(3)(4)(5)=120$
$(3)(4)(5)(6)=360$
$(4)(5)(6)(7)=840$
and we note that $24=5^{2}-1,120=11^{2}-1,360=19^{2}-1$
$\& 840=29^{2}-1$
So, if we can prove that $n(n+1)(n+2)(n+3)+1$ is always a perfect square, then we will have the required result.

The sequence $5,11,19,29$ has 1 st differences of $6,8 \& 10$, and 2nd differences of 2 , and so is quadratic and of the form
$\frac{1}{2}(2) n^{2}+a n+b$
Setting n equal to $1 \& 2$ shows that the sequence is $n^{2}+3 n+1$
So, we want to show that
$n(n+1)(n+2)(n+3)+1=\left(n^{2}+3 n+1\right)^{2}$
Method 1: Expand both sides
Method 2: Induction
Having shown that the result is true for $n=1$, we assume that it is true for $n=k$, so that
$k(k+1)(k+2)(k+3)+1=\left(k^{2}+3 k+1\right)^{2}$
We then want to show that, if the result is true for $n=k$, then it will be true for $n=k+1$;
ie that (B):

$$
(k+1)(k+2)(k+3)(k+4)+1=\left([k+1]^{2}+3[k+1]+1\right)^{2}
$$

By subtracting (A) from (B), this is equivalent to showing (C):

$$
\begin{aligned}
& \left([k+1]^{2}+3[k+1]+1\right)^{2}-\left(k^{2}+3 k+1\right)^{2} \\
& =(k+1)(k+2)(k+3)(k+4)-k(k+1)(k+2)(k+3)
\end{aligned}
$$

LHS of $(\mathrm{C})=\left\{[k+1]^{2}+3[k+1]+1+k^{2}+3 k+1\right\}$
$\times\left\{[k+1]^{2}+3[k+1]+1-\left(k^{2}+3 k+1\right)\right\}$
$=\left\{2 k^{2}+8 k+6\right\}\{2 k+4\}=4\left(k^{2}+4 k+3\right)(k+2)$
$=4(k+1)(k+3)(k+2)$
whilst RHS of $(\mathrm{C})=(k+1)(k+2)(k+3)\{k+4-k\}$,
giving the same expression
Thus the result is true for $n=1$, and if it is true for $n=k$, then it will be true for $n=k+1$. Hence it must be true for $n=2,3, \ldots$, and therefore all positive integers, by the principle of induction.

