Show that $3^{57}-2^{57}$ cannot be prime.

Solution
We could consider using the result
$x^{n}-y^{n}=(x-y)\left(x^{n-1}+x^{n-2} y+\cdots+x y^{n-2}+y^{n-1}\right)$
but it isn't of any use having $x-y=3-2=1$.
However, we can write $3^{57}-2^{57}$ as $\left(3^{19}\right)^{3}-\left(2^{19}\right)^{3}$, for example, to give the factor $3^{19}-2^{19}$ (or writing it instead as
$\left(3^{3}\right)^{19}-\left(2^{3}\right)^{19}, 3^{3}-2^{3}$ is also seen to be a factor).
So $3^{57}-2^{57}$ isn't a prime number.

