Q1

Can n^{3} equal $n+12345670$ (where n is a positive integer)?

Q2

Find all positive integer solutions of the equation
$x y-8 x+6 y=90$

Q3
Show that $3^{57}-2^{57}$ cannot be prime.

Q4

Prove that there are no positive integers m and n such that $m^{2}=n^{2}+1$

Q5

Show that the product of 4 consecutive positive integers is never a perfect square.

Q6

Show that numbers of the form $4(n-1)^{2}+2$ can never be one more than a multiple of 3 , where n is a positive integer.

Q7

Let $h(a, b)$ denote the highest common factor of $a \& b$. Suppose that $b=k a+r$, where $k, a \& r$ are positive integers.

Prove that $h(a, b)=h(a, r)$.

Q8

Let $f(n)$ be the number of factors, other than 1 , of the number n.
Show that, if $m \& n$ have no common factors,
then $f(m n)=f(m) f(n)+f(m)+f(n)$

