STEP/Inequalities Q9 (20/6/23)

Let *x*, *y* & *z* be positive real numbers.

(i) If $x + y \ge 2$, is it necessarily true that $\frac{1}{x} + \frac{1}{y} \le 2$?

(ii) If $x + y \le 2$, is it necessarily true that $\frac{1}{x} + \frac{1}{y} \ge 2$?

Solution

(i) No: if x (say) is very small, then $\frac{1}{x}$ will be very large.

(ii) Note that, when $x = y = 1, \frac{1}{x} + \frac{1}{y} = 2$

Also, if the result is true for x + y = 2, then if x or y is made smaller, so that x + y < 2, $\frac{1}{x} + \frac{1}{y}$ becomes larger, so that the result is still true. So, WLOG (without loss of generality), we need only investigate the case where x + y = 2.

[This is an example of "reformulating the problem".]

Experimenting with some numbers, we get the impression that $\frac{1}{x} + \frac{1}{y} \ge 2$. So, aiming for a proof by contradiction, suppose that $\frac{1}{x} + \frac{1}{y} < 2$

Then,
$$\frac{x+y}{xy} < 2$$
, so that $2 < 2x(2-x)$ [as $xy > 0$]

and hence $1 < 2x - x^2$ and $x^2 - 2x + 1 < 0$ or $(x - 1)^2 < 0$,

which is impossible.

Thus
$$\frac{1}{x} + \frac{1}{y} \ge 2$$
 when $x + y \le 2$

Alternative approach

To prove that $\frac{1}{x} + \frac{1}{y} \ge 2$ when x + y = 2,

we note that WLOG we need only consider solutions of the form $x = 1 + \delta$, $y = 1 - \delta$ (where $\delta > 0$).

But the reduction from $\frac{1}{1}$ to $\frac{1}{1+\delta}$ will be outweighed by the rise from $\frac{1}{1}$ to $\frac{1}{1-\delta}$ [consider the extreme cases $\frac{1}{1000}$ to $\frac{1}{1001}$ versus $\frac{1}{4}$ to $\frac{1}{3}$, which shows that the change of 1 in the denominator has a $_{\rm fmng.uk}$ greater effect when the denominator is smaller, as it is with $1-\delta,$ compared to $1+\delta$]