STEP/Inequalities Q9 (20/6/23)

Let $x, y \& z$ be positive real numbers.
(i) If $x+y \geq 2$, is it necessarily true that $\frac{1}{x}+\frac{1}{y} \leq 2$?
(ii) If $x+y \leq 2$, is it necessarily true that $\frac{1}{x}+\frac{1}{y} \geq 2$?

Solution

(i) No: if x (say) is very small, then $\frac{1}{x}$ will be very large.
(ii) Note that, when $x=y=1, \frac{1}{x}+\frac{1}{y}=2$

Also, if the result is true for $x+y=2$, then if x or y is made smaller, so that $x+y<2, \frac{1}{x}+\frac{1}{y}$ becomes larger, so that the result is still true. So, WLOG (without loss of generality), we need only investigate the case where $x+y=2$.
[This is an example of "reformulating the problem".]
Experimenting with some numbers, we get the impression that $\frac{1}{x}+\frac{1}{y} \geq 2$. So, aiming for a proof by contradiction, suppose that $\frac{1}{x}+\frac{1}{y}<2$

Then, $\frac{x+y}{x y}<2$, so that $2<2 x(2-x)$ [as $\left.x y>0\right]$
and hence $1<2 x-x^{2}$ and $x^{2}-2 x+1<0$ or $(x-1)^{2}<0$, which is impossible.

Thus $\frac{1}{x}+\frac{1}{y} \geq 2$ when $x+y \leq 2$

Alternative approach

To prove that $\frac{1}{x}+\frac{1}{y} \geq 2$ when $x+y=2$,
we note that WLOG we need only consider solutions of the form $x=1+\delta, y=1-\delta($ where $\delta>0)$.

But the reduction from $\frac{1}{1}$ to $\frac{1}{1+\delta}$ will be outweighed by the rise from $\frac{1}{1}$ to $\frac{1}{1-\delta}$ [consider the extreme cases $\frac{1}{1000}$ to $\frac{1}{1001}$ versus $\frac{1}{4}$ to $\frac{1}{3}$, which shows that the change of 1 in the denominator has a
greater effect when the denominator is smaller, as it is with $1-\delta$, compared to $1+\delta$]

