STEP/Induction Q1 (18/6/23)

(i) If $y=e^{x} \sin x$, show that $\frac{d y}{d x}=\sqrt{2} e^{x} \sin \left(x+\frac{\pi}{4}\right)$
(ii) Prove by induction that $\frac{d^{n} y}{d x^{n}}=(\sqrt{2})^{n} e^{x} \sin \left(x+\frac{n \pi}{4}\right)$

Solution

(i) $\frac{d y}{d x}=e^{x} \sin x+e^{x} \cos x=\sqrt{2} e^{x}\left\{\sin x\left(\frac{1}{\sqrt{2}}\right)+\cos x\left(\frac{1}{\sqrt{2}}\right)\right\}$
$=\sqrt{2} e^{x}\left\{\sin x \cos \left(\frac{\pi}{4}\right)+\cos x \sin \left(\frac{\pi}{4}\right)\right\}$
$=\sqrt{2} e^{x} \sin \left(x+\frac{\pi}{4}\right)$
(ii) [Show that the result is true for $n=1$]

Now assume that the result is true for $n=k$, so that $\frac{d^{k} y}{d x^{k}}=(\sqrt{2})^{k} e^{x} \sin \left(x+\frac{k \pi}{4}\right)$

Then $\frac{d^{k+1} y}{d x^{k+1}}=(\sqrt{2})^{k} e^{x} \sin \left(x+\frac{k \pi}{4}\right)+(\sqrt{2})^{k} e^{x} \cos \left(x+\frac{k \pi}{4}\right)$
$=(\sqrt{2})^{k+1} e^{x}\left\{\sin \left(x+\frac{k \pi}{4}\right)\left(\frac{1}{\sqrt{2}}\right)+\cos \left(x+\frac{k \pi}{4}\right)\left(\frac{1}{\sqrt{2}}\right)\right\}$
$=(\sqrt{2})^{k+1} e^{x}\left\{\sin \left(x+\frac{k \pi}{4}\right) \cos \left(\frac{\pi}{4}\right)+\cos \left(x+\frac{k \pi}{4}\right) \sin \left(\frac{\pi}{4}\right)\right\}$
$=(\sqrt{2})^{k+1} e^{x} \sin \left(\left[x+\frac{k \pi}{4}\right]+\frac{\pi}{4}\right)$
$=(\sqrt{2})^{k+1} e^{x} \sin \left(x+\frac{(k+1) \pi}{4}\right)$
[Standard wording]

