STEP/Hyperbolic Functions Q4 (16/6/23)

Given that sinhx = tany, where $-\frac{\pi}{2} < y < \frac{\pi}{2}$, show that

(a) tanhx = siny (b) $x = \ln(tany + secy)$

Solution

(a) As sinhx = tany, we can construct a right-angled triangle (see diagram below), where the hypotenuse is coshx, as $sinh^2x + 1 = cosh^2x$.

Then $siny = \frac{sinhx}{coshx} = tanhx$, as required.

Alternatively: $tanhx = \frac{sinhx}{coshx} = \frac{tany}{\sqrt{1+sinh^2x}}$

(from $sinh^2x + 1 = cosh^2x$, noting that coshx is always positive, so that we take the positive square root)

$$=\frac{tany}{\sqrt{1+tan^2y}}=\frac{tany}{\sqrt{sec^2y}}=\frac{tany}{secy}$$

(as cosy > 0 when $-\frac{\pi}{2} < y < \frac{\pi}{2}$, and hence secy > 0 also) = tanycosy = siny

(b) From the right-angled triangle,

tany + secy = sinhx + coshx

$$=\frac{1}{2}(e^{x}-e^{-x})+\frac{1}{2}(e^{x}+e^{-x})=e^{x},$$

so that $\ln(tany + secy) = x$, as required.

fmng.uk

Alternatively:
$$sinhx = tany \Rightarrow \frac{1}{2}(e^{x} - e^{-x}) = tany$$

 $\Rightarrow e^{2x} - 1 = 2tanye^{x}$
 $\Rightarrow e^{2x} - 2tanye^{x} - 1 = 0$
 $\Rightarrow e^{x} = \frac{2tany \pm \sqrt{4tan^{2}y + 4}}{2} = tany \pm secy$
 $tany - secy = \frac{siny - 1}{cosy} < 0$ when $-\frac{\pi}{2} < y < \frac{\pi}{2}$
Hence, as $e^{x} > 0$, it follows that $e^{x} = tany + secy$,

and hence $x = \ln(tany + secy)$