STEP/Hyperbolic Functions Q4 (16/6/23)

Given that $\sinh x=$ tany, where $-\frac{\pi}{2}<y<\frac{\pi}{2}$, show that
(a) $\tanh x=\sin y$
(b) $x=\ln (\tan y+\sec y)$

Solution
(a) As $\sinh x=$ tany, we can construct a right-angled triangle (see diagram below), where the hypotenuse is $\cosh x$, as $\sinh ^{2} x+1=$ $\cosh ^{2} x$.

Then $\sin y=\frac{\sinh x}{\cosh x}=\tanh x$, as required.
Alternatively: $\tanh x=\frac{\sinh x}{\cosh x}=\frac{\tan y}{\sqrt{1+\sinh ^{2} x}}$
(from $\sinh ^{2} x+1=\cosh ^{2} x$, noting that $\cosh x$ is always positive, so that we take the positive square root)
$=\frac{\tan y}{\sqrt{1+\tan ^{2} y}}=\frac{\tan y}{\sqrt{\sec ^{2} y}}=\frac{\tan y}{\sec y}$
(as cosy >0 when $-\frac{\pi}{2}<y<\frac{\pi}{2}$, and hence secy >0 also)
$=\operatorname{tany} \cos y=\sin y$
(b) From the right-angled triangle,
$\tan y+\sec y=\sinh x+\cosh x$
$=\frac{1}{2}\left(e^{x}-e^{-x}\right)+\frac{1}{2}\left(e^{x}+e^{-x}\right)=e^{x}$,
so that $\ln (\operatorname{tany}+\sec y)=x$, as required.

Alternatively: $\sinh x=\operatorname{tany} \Rightarrow \frac{1}{2}\left(e^{x}-e^{-x}\right)=\tan y$
$\Rightarrow e^{2 x}-1=2$ tanye e^{x}
$\Rightarrow e^{2 x}-2 \operatorname{tany} e^{x}-1=0$
$\Rightarrow e^{x}=\frac{2 \tan y \pm \sqrt{4 \tan ^{2} y+4}}{2}=\tan y \pm \sec y$
$\tan y-\sec y=\frac{\sin y-1}{\cos y}<0$ when $-\frac{\pi}{2}<y<\frac{\pi}{2}$
Hence, as $e^{x}>0$, it follows that $e^{x}=\operatorname{tany}+$ secy, and hence $x=\ln ($ tany + secy $)$

