STEP/Hyperbolic Functions Q2 (16/6/23)

Given that $\operatorname{artanh} x=\frac{1}{2} \ln \left(\frac{1+x}{1-x}\right)$ and $\operatorname{arcoth} x=\frac{1}{2} \ln \left(\frac{1+x}{x-1}\right)$, and also that $\frac{d}{d x}(\operatorname{artanh} x)=\frac{d}{d x}(\operatorname{arcoth} x)=\frac{1}{1-x^{2}}$,
what is wrong with the following reasoning?
$\int \frac{1}{1-x^{2}} d x=\operatorname{artanh} x+C=\operatorname{arcoth} x+C_{1}$, so that $\operatorname{artanh} x-\operatorname{arcoth} x=C_{2}$

But $\operatorname{artanh} x-\operatorname{arcoth} x=\frac{1}{2} \ln \left(\frac{\left(\frac{1+x}{1-x}\right)}{\left(\frac{1+x}{x-1}\right)}\right)=\frac{1}{2} \ln \left(\frac{x-1}{1-x}\right)=\frac{1}{2} \ln (-1)$, which isn't defined!

Solution

The problem is that the domains of $y=\operatorname{artanh} x$ and
$y=\operatorname{arcoth} x$ don't overlap (see graphs below). We ought to say that $\operatorname{artanh} x=\frac{1}{2} \ln \left(\frac{1+x}{1-x}\right)$ for $|x|<1$ and $\operatorname{arcoth} x=\frac{1}{2} \ln \left(\frac{1+x}{x-1}\right)$ for $|x|>1$. So it doesn't make sense to determine $\operatorname{artanh} x-\operatorname{arcoth} x$

Note that, with $|x|<1, \frac{d}{d x}(\operatorname{artanh} x)=\frac{1}{1-x^{2}}>0$ for all x; whilst with $|x|>1, \frac{d}{d x}(\operatorname{arcoth} x)=\frac{1}{1-x^{2}}<0$ for all x

