STEP/Hyperbolic Functions: Exercises - Overview (16/6/23)

Q1

Simplify sinh ($cosh^{-1}2$)

Q2

Given that $artanhx = \frac{1}{2}ln\left(\frac{1+x}{1-x}\right)$ and $arcothx = \frac{1}{2}ln\left(\frac{1+x}{x-1}\right)$, and also that $\frac{d}{dx}(artanhx) = \frac{d}{dx}(arcothx) = \frac{1}{1-x^2}$, what is wrong with the following reasoning?

$$\int \frac{1}{1-x^2} dx = \operatorname{artanhx} + C = \operatorname{arcothx} + C_1,$$

so that $\operatorname{artanhx} - \operatorname{arcothx} = C_2$
But $\operatorname{artanhx} - \operatorname{arcothx} = \frac{1}{2} \ln \left(\frac{\binom{1+x}{1-x}}{\binom{1+x}{x-1}} \right) = \frac{1}{2} \ln \left(\frac{x-1}{1-x} \right) = \frac{1}{2} \ln (-1),$
which isn't defined!

Q3

Simplify sinh(arcoshx) & cosh(arsinhx)

Given that sinhx = tany, where $-\frac{\pi}{2} < y < \frac{\pi}{2}$, show that (a) tanhx = siny (b) $x = \ln(tany + secy)$