STEP/Hyperbolic Functions: Exercises - Overview (16/6/23)

Q1

Simplify $\sinh \left(\cosh ^{-1} 2\right)$

Q2

Given that $\operatorname{artanh} x=\frac{1}{2} \ln \left(\frac{1+x}{1-x}\right)$ and $\operatorname{arcoth} x=\frac{1}{2} \ln \left(\frac{1+x}{x-1}\right)$, and also that $\frac{d}{d x}(\operatorname{artanh} x)=\frac{d}{d x}(\operatorname{arcoth} x)=\frac{1}{1-x^{2}}$,
what is wrong with the following reasoning?
$\int \frac{1}{1-x^{2}} d x=\operatorname{artanh} x+C=\operatorname{arcoth} x+C_{1}$,
so that $\operatorname{artanh} x-\operatorname{arcoth} x=C_{2}$
But $\operatorname{artanh} x-\operatorname{arcoth} x=\frac{1}{2} \ln \left(\frac{\left(\frac{1+x}{1-x}\right)}{\left(\frac{1+x}{x-1}\right)}\right)=\frac{1}{2} \ln \left(\frac{x-1}{1-x}\right)=\frac{1}{2} \ln (-1)$, which isn't defined!

Q3

Simplify $\sinh (\operatorname{arcosh} x) \& \cosh (\operatorname{arsinh} x)$

Q4
Given that $\sinh x=\tan y$, where $-\frac{\pi}{2}<y<\frac{\pi}{2}$, show that
(a) $\tanh x=\sin y$
(b) $x=\ln (\tan y+s e c y)$

