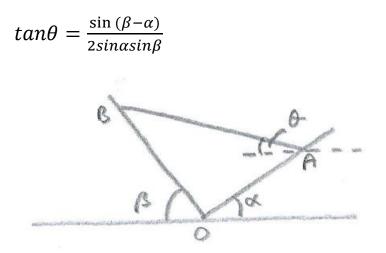
STEP/Forces, Q7 (13/6/23)

A uniform rod AB lies in equilibrium between two smooth planes inclined at angles α and β to the horizontal, as shown in the diagram, where $\beta > \alpha$, such that the vertical plane containing AB is perpendicular to the line of intersection of the two planes.

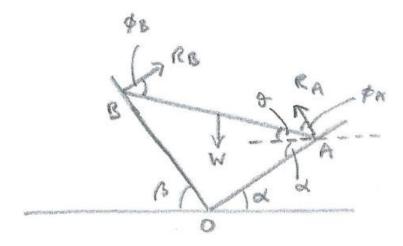
(i) Show that the ratio of the reactions at A and B is $sin\beta$: $sin\alpha$

(ii) If AB makes an angle θ to the horizontal, show that



[from Wragg: "Modern Mechanics - A vectorial approach"]

Solution



(i) Taking moments about the centre of mass of AB, which is assumed to be of length 2d,

rotational equilibrium $\Rightarrow R_A sin \phi_A d = R_B sin \phi_B d$,

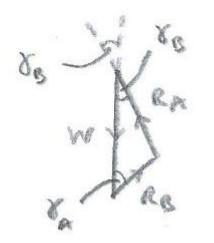
And $\phi_A + \theta + \alpha = 90^\circ$ (the angle that R_A makes with OA)

$$\& \phi_B + (180^\circ - [180^\circ - \alpha - \beta] - [\alpha + \theta]) = 90^\circ$$

(the angle that R_B makes with OB),

and so $\phi_B - \theta + \beta = 90^{\circ}$ Then $\frac{R_A}{R_B} = \frac{\sin\phi_B}{\sin\phi_A} = \frac{\cos(90^{\circ} - \phi_B)}{\cos(90^{\circ} - \phi_A)} = \frac{\cos(\beta - \theta)}{\cos(\alpha + \theta)}$ (1)

[Instead of resolving in 2 perpendicular directions, we can (if necessary) obtain 2 equations from Lami's theorem:]



As AB is in equilbrium, the triangle of forces can be applied (see diagram, where W is the weight of AB). Then, by Lami's theorem:

$$\frac{R_A}{\sin\gamma_A} = \frac{R_B}{\sin\gamma_B} \quad (2)$$

[A similar equation involving W could also be obtained, but this introduces a further unknown (ie W) into the equations.]

Drawing a vertical line through B gives

$$\gamma_A + 90^\circ + (90^\circ - \beta) = 180^\circ$$
, so that $\gamma_A = \beta$

Drawing a vertical line through A gives

$$\gamma_B + 90^\circ + (90^\circ - \alpha) = 180^\circ$$
, so that $\gamma_B = \alpha$

Then, from (2), $\frac{R_A}{R_B} = \frac{\sin \gamma_A}{\sin \gamma_B} = \frac{\sin \beta}{\sin \alpha}$, as required.

(ii) From (1),
$$\frac{\cos(\beta-\theta)}{\cos(\alpha+\theta)} = \frac{\sin\beta}{\sin\alpha}$$
, so that
 $\sin\alpha(\cos\beta\cos\theta + \sin\beta\sin\theta) = \sin\beta(\cos\alpha\cos\theta - \sin\alpha\sin\theta)$
and hence (dividing by $\cos\theta$),
 $\sin\alpha\cos\beta + \sin\alpha\sin\beta\tan\theta = \sin\beta\cos\alpha - \sin\beta\sin\alpha\tan\theta$,

so that $tan\theta(2sin\alpha sin\beta) = sin\beta cos\alpha - sin\alpha cos\beta$,

and $tan\theta = \frac{\sin(\beta - \alpha)}{2\sin\alpha\sin\beta}$, as required.