STEP/Forces, Q5 (11/6/23)

A rollercaster ride is modelled by a particle on a smooth wire. If a point on the wire has coordinates (x, y), show that $\dot{x} \ddot{x}+\dot{y}(\ddot{y}+g)=0$
(a) by an energy method, and (b)(as an alternative method)
by applying Newton's $2^{\text {nd }}$ Law

Solution

(a) By Conservation of Energy,
$K E+P E=C$, where C is a constant; ie $\frac{1}{2} m\left(\dot{x}^{2}+\dot{y}^{2}\right)+m g y=C$, where m is the mass of the particle. Differentiating wrt $t, m(\dot{x} \ddot{x}+\dot{y} \ddot{y})+m g \dot{y}=0$, so that $\dot{x} \ddot{x}+\dot{y}(\ddot{y}+g)=0$, as required.
(b) As the wire is smooth, the only force on the particle affecting its motion is the component of its weight along the wire.

By N2L, $-m g \sin \theta=m(\ddot{x} \cos \theta+\ddot{y} \sin \theta), \quad[$ see Note below] where the gradient of the wire is $\frac{d y}{d x}=\tan \theta$ at the point (x, y), and $\ddot{x} \& \ddot{y}$ are the $x \& y$ components of the acceleration of the particle.

Then $-g \tan \theta=\ddot{x}+\ddot{y} \tan \theta$, and hence, since $\tan \theta=\frac{d y}{d x}=\frac{d y / d t}{d x / d t}=\frac{\dot{y}}{\dot{x}}$, $-g \dot{y}=\dot{x} \ddot{x}+\ddot{y} \dot{y}$, or $\dot{x} \ddot{x}+\dot{y}(\ddot{y}+g)=0$, as required.
[Note: If instead the force along the wire is resolved in the $x \& y$ directions:
$(-m g \sin \theta) \cos \theta=m \ddot{x}$ and $(-m g \sin \theta) \sin \theta=m \ddot{y}$
Then $m(\ddot{x} \cos \theta+\ddot{y} \sin \theta)=(-m g \sin \theta)\left(\cos ^{2} \theta+\sin ^{2} \theta\right)$
$=-m g \sin \theta$, as before.]

